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Motivation – Model – Data and cases – Results – Conclusion and outlook

▪ Energy transition to reach climate neutrality major target of European energy policies

▪ Hydrogen is seen as an important building block to reach these goals

− Adressed for example in REPower EU

▪ European countries have developed hydrogen roadmaps with ambitious goals

− E. g. Germany: National Hydrogen Strategy

➢ For analysis of effects of hydrogen strategies integrated modelling approaches are required

The role of hydrogen for the energy transition
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▪ „Model coupling (German: Modellkopplung) for the integrated optimization of long term
transformation paths – coevolution, coordination and robustness under consideration of different 
system levels“

▪ Timeline

− August 2022 – July 2025

▪ Project Partners

− ie3 (Technical University of Dortmund)

− GWI Essen e.V. (Gas and heating institute Essen)

▪ Tasks
− Integrated modelling of electricity, gas and hydrogen markets

− Analysis of implications of different hydrogen strategies

− Focus on the development of a mathematical model coupling approach

Context: Ongoing research project MOPPL
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Master problem:
Endogenous investments

Subproblem 1:
Operational problem

electricity grid

Subproblem 2:
Operational problem

gas grid

Motivation – Model – Data and cases – Results – Conclusion and outlook

MOPPL: Benders Decomposition

Endogenously
determined capacities

(e. g. electrolyzers)

Endogenously
determined capacities

(e. g. electrolyzers)

Benders Cuts:
Consisting of marginals of

capacity equations in 
subproblems
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1. High level of detail in both subproblems

− Nodal simulations with time-coupling
contraints (e. g. storages)

2. High iteration count of Benders 
Decomposition expected

− Esp. when endogenously optimizing
expansion of several technologies

MOPPL: Challenges

➢ Reduction of computational burden necessary

− Four typical weeks with hourly time steps will be
simulated

➢ Parallel computing of typical weeks in sub
problems planned

− Typical weeks must be independent of each other

Research Question:

How to combine Benders Decomposition with typical weeks and the modelling of seasonal storages?
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▪ Approach is based on the work of Kotzur et al. (2018) *

▪ Decomposition of filling levels into an intra-period filling level and an 
inter-period filling-level

− Intra-period: hourly level within typical period

− Inter-period: seasonal level of typical period

− Next inter-period filling level determined by final intra-period filling level

➢ Yields consistent seasonal storage optimization based on typical weeks

➢ Application to Benders Decomposition

− Inter-period optimization in master problem

− Intra-period optimization in subproblem

→ Transfer of storage bounds to the subproblem

Modelling of typical weeks and seasonal storages

* Time series aggregation for energy system design:
Modeling seasonal storage
(Figures by Kotzur et al.) 7
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▪ Stylized energy system model

− Master problem:
Determination of capacity adjustment and seasonal storage bounds

− Subproblem:
Optimization of dispatch of generation and storage technologies

▪ Objective function (overall problem)

𝑚𝑖𝑛! 𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑀 + 𝐶𝑜𝑝

▪ Master problem:

𝐶𝑀 =෍

𝑟,𝑖

𝑐𝑖
𝑖𝑛𝑣 ∙ 𝐾𝑟,𝑖 + α

▪ Subproblem:

𝐶𝑜𝑝 = ෍

𝑡𝑤,𝑡,𝑟,𝑖

𝑦𝑡𝑤,𝑡,𝑟,𝑖 ∙ 𝑐𝑖
𝑣𝑎𝑟 ∙ 𝑓𝑟𝑒𝑞𝑡𝑤 + ෍

𝑡𝑤,𝑡,𝑟

𝜔𝑡𝑤,𝑡,𝑟 ∙ 𝑓𝑟𝑒𝑞𝑡𝑤 ∙ 106 + ෍

𝑡𝑤,𝑡,𝑟,𝑖𝑅𝑒𝑠

𝑎𝑡𝑤,𝑡,𝑟,𝑖𝑅𝑒𝑠 ∙ 𝑓𝑟𝑒𝑞𝑡𝑤 ∙ 50

Master and subproblem: objective functions

Restricted by Benders Cuts

Curtailment costsSlack costsGeneration costs

Sets:
𝑡𝑤 – Typical weeks / 𝑤 – Regular weeks
𝑡 – Time steps within a typical week (hourly)
𝑟 – Regions
𝑖 – Technologies
𝑖𝑅𝑒𝑠(𝑖) – Subset for renewable technologies
𝑖𝑆𝑡𝑜𝐻2(𝑖) – Subset for seasonal H2 storage technologies
𝑖𝑆𝑡𝑜𝐸𝑙(𝑖) – Subset for electricity sotrage technologies

Parameters:

𝑐𝑖
𝑖𝑛𝑣 / 𝑐𝑖

𝑣𝑎𝑟 – Investment and variable costs of technologies
𝑓𝑟𝑒𝑞𝑡𝑤 – Count of typical week per year

Positive variables:
𝐾𝑟,𝑖 – Endogenously determined capacity adjustment
𝑦𝑡𝑤,𝑡,𝑟,𝑖 – Electricity production of generation technologies

Investment costs
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▪ Inter-period filling level (FL) (w/ circle condition):

𝑓𝑤+1,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑒𝑟 = 𝑓𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2

𝑖𝑛𝑡𝑒𝑟 + 𝑓𝑡𝑤 ∈ 𝑤_𝑡𝑤 𝑤,𝑡𝑤 ,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎,𝑒𝑛𝑑 ∀ 𝑤, 𝑟, 𝑖𝑆𝑡𝑜𝐻2

− Changes of inter-period FL driven by final intra-period FL

▪ Max. intra-period filling level:

𝑓𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎,𝑒𝑛𝑑 ≤ 𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2

𝑖𝑛𝑡𝑟𝑎,𝑚𝑎𝑥 ∀ 𝑡𝑤, 𝑡, 𝑟, 𝑖𝑆𝑡𝑜𝐻2

− Final intra-period FL limited by maximum intra-period FL

▪ Min. intra-period filling level:

𝑓𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎,𝑒𝑛𝑑 ≥ 𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2

𝑖𝑛𝑡𝑟𝑎,𝑚𝑖𝑛 ∀ 𝑡𝑤, 𝑡, 𝑟, 𝑖𝑆𝑡𝑜𝐻2

− Final intra-period FL limited by minimum intra-period FL

Master problem: seasonal storage equations (I)

Free variables:

𝑓𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑒𝑟 – Inter-period filling level

𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎,𝑒𝑛𝑑

– Final intra-period filling level

𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎,𝑚𝑎𝑥

– Maximum intra-period filling level

𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎,𝑚𝑖𝑛

– Minimum intra-period filling level
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▪ Max. total filling level:

𝑓𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑒𝑟 + 𝑓𝑡𝑤 ∈ 𝑤_𝑡𝑤 𝑤,𝑡𝑤 ,𝑟,𝑖𝑆𝑡𝑜𝐻2

𝑖𝑛𝑡𝑟𝑎,𝑚𝑎𝑥 ≤ 𝐾𝑟,𝑖𝑆𝑡𝑜𝐻2 ∙ 𝜖 ∀ 𝑤, 𝑟, 𝑖𝑆𝑡𝑜𝐻2

− Combined FL limited by storage capacity and volume factor

▪ Min. total filling level:

𝑓𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑒𝑟 + 𝑓𝑡𝑤 ∈ 𝑤_𝑡𝑤 𝑤,𝑡𝑤 ,𝑟,𝑖𝑆𝑡𝑜𝐻2

𝑖𝑛𝑡𝑟𝑎,𝑚𝑖𝑛 ≥ 0 ∀ 𝑤, 𝑟, 𝑖𝑆𝑡𝑜𝐻2

− Combined FL must be positive

▪ Plus auxiliary equations that prevent infeasible storage bounds in subproblem and accelerate convergence

Transferred to the subproblem:

▪ Max. intra-period filling level: 𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎,𝑚𝑎𝑥

▪ Min. intra-period filling level: 𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎,𝑚𝑖𝑛

▪ Final intra-period filling level: 𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎,𝑒𝑛𝑑

Master problem: seasonal storage equations (II)

Parameter:
𝜖 – Energy-to-power ratio

(storage volume factor)

Parameters in the subproblem
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▪ Electricity demand:

෍

𝑖

𝑦𝑡𝑤,𝑡,𝑟,𝑖 + ෍

𝑖𝑆𝑡𝑜𝐸𝑙

𝑦𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐸𝑙
𝑑𝑖𝑠 − ෍

𝑖𝑆𝑡𝑜𝐸𝑙

𝑦𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐸𝑙
𝑐ℎ𝑎 +෍

𝑟𝑟

(𝑥𝑡𝑤,𝑡,𝑟𝑟,𝑟
𝑒𝑥𝑝,𝑒𝑙

− 𝑥𝑡𝑤,𝑡,𝑟,𝑟𝑟
𝑖𝑚𝑝,𝑒𝑙

) + 𝜔𝑡𝑤,𝑡,𝑟 = 𝐷𝑡𝑤,𝑡,𝑟 ∀ 𝑡𝑤, 𝑡, 𝑟

▪ Hydrogen demand:

෍

𝑖𝑃𝑡𝐻2

𝑦𝑡𝑤,𝑡,𝑟,𝑖𝑃𝑡𝐻2
𝐻2 + ෍

𝑖𝐶𝑜𝑛𝑣

𝑦𝑡𝑤,𝑡,𝑟,𝑖𝑃𝑡𝐻2
𝑐𝑜𝑛𝑠,𝐻2 + ෍

𝑖𝑆𝑡𝑜𝐻2

𝑦𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑑𝑖𝑠,𝐻2 − ෍

𝑖𝑆𝑡𝑜𝐻2

𝑦𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑐ℎ𝑎,𝐻2 +෍

𝑟𝑟

(𝑥𝑡𝑤,𝑡,𝑟𝑟,𝑟
𝑒𝑥𝑝,𝐻2

− 𝑥𝑡𝑤,𝑡,𝑟,𝑟𝑟
𝑖𝑚𝑝,𝐻2

) + 𝜔𝑡𝑤,𝑡,𝑟
𝐻2 = 𝐷𝑡𝑤,𝑡,𝑟

𝐻2 ∀ 𝑡𝑤, 𝑡, 𝑟

▪ Further restrictions

− Max. capacity and filling levels, renewable generation, max. transmission capacity, hydrogen production, …

Subproblem: main restrictions

SlackStorage discharging and chargingElec. generation Exports and imports Demand

Electrolysis and consumption of
H2 power plants

Storage discharging and charging Exports and imports Slack (3rd 
country imports)

Demand
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▪ Max. charging & discharging:

𝑦𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑐ℎ𝑎,𝐻2 + 𝑦𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2

𝑑𝑖𝑠,𝐻2 ≤ 𝐾𝑟,𝑖𝑆𝑡𝑜𝐻2 ∀ 𝑡𝑤, 𝑡, 𝑟, 𝑖𝑆𝑡𝑜𝐻2 | 𝜗𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
max _𝑑−𝑐ℎ

▪ Filling level restriction:

𝑓𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎 = 𝑓𝑡𝑤,𝑡−1,𝑟,𝑖𝑆𝑡𝑜𝐻2

𝑖𝑛𝑡𝑟𝑎 + 𝑦𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑐ℎ𝑎,𝐻2 ∙ 𝜇 − 𝑦𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2

𝑑𝑖𝑠,𝐻2 ∙
1

𝜇
∀ 𝑡𝑤, 𝑡, 𝑟, 𝑖𝑆𝑡𝑜𝐻2

▪ Initial filling level:

𝑓𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎 − 𝑦𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2

𝑐ℎ𝑎 ∙ 𝜇 − 𝑦𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑑𝑖𝑠 ∙

1

𝜇
= 0 ∀ 𝑡𝑤, 𝑡1, 𝑟, 𝑖𝑆𝑡𝑜𝐻2

Storage bounds from master problem:

▪ Max. filling level: 𝑓𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎 ≤ 𝑓𝑡𝑤,𝑟𝑖𝑆𝑡𝑜𝐻2

𝑖𝑛𝑡𝑟𝑎,𝑚𝑎𝑥 ∀ 𝑡𝑤, 𝑡, 𝑟, 𝑖𝑆𝑡𝑜𝐻2 | 𝜗𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
max _𝑣𝑜𝑙

▪ Min. filling level: 𝑓𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎 ≥ 𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2

𝑖𝑛𝑡𝑟𝑎,𝑚𝑖𝑛 ∀ 𝑡𝑤, 𝑡, 𝑟, 𝑖𝑆𝑡𝑜𝐻2 | 𝜗𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
min _𝑣𝑜𝑙

▪ Final filling level: 𝑓𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎 = 𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2

𝑖𝑛𝑡𝑟𝑎,𝑒𝑛𝑑 ∀ 𝑡𝑤, 𝑡168, 𝑟, 𝑖𝑆𝑡𝑜𝐻2 | 𝜗𝑡𝑤,𝑡168,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑒𝑛𝑑

Subproblem: seasonal storage equations

Free variable:

𝑓𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎 – Intra-period filling level

Dual variables (marginals):
𝜗𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2 – Variables of dual problem
(marginals) for Benders Cut

Parameter:
𝜇 – Charging and discharging efficiency

𝑓𝑡𝑤,𝑟𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎,𝑚𝑎𝑥 – Max. FL from master problem

𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎,𝑚𝑖𝑛 – Min. FL from master problem

𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2
𝑖𝑛𝑡𝑟𝑎,𝑒𝑛𝑑 – Final FL from master problem
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Summary

Master problem:
Minimization of investment costs

𝑚𝑖𝑛! 𝐶𝑖𝑛𝑣 + α

Subproblem:
Minimization of operational costs

𝑚𝑖𝑛! 𝐶𝑜𝑝(𝐾𝑗 , 𝑓𝑗)

Information:
𝐾𝑗 - Vector of capacities

𝑓𝑗 - Vector of storage bounds

Feedback:
𝐶𝑜𝑝(𝐾𝑗, 𝑓𝑗) – Operational costs

𝜗𝑗(𝐾𝑗, 𝑓𝑗 ) – Dual variables for α

𝑗 – Iteration
𝐿𝐵𝑗 – Lower bound

𝑈𝐵𝑗 – Upper bound

𝜃 – Threshold convergence

Lower bound:

𝐿𝐵𝑗 = 𝐶𝑖𝑛𝑣(𝐾𝑗) + α

Upper bound:

𝑈𝐵𝑗 = 𝐶𝑗
𝑖𝑛𝑣 𝐾𝑗 + 𝐶𝑗

𝑜𝑝(𝐾𝑗, 𝑓𝑗)

Convergence check:
𝑈𝐵𝑗 − 𝐿𝐵𝑗 = 𝐺𝑎𝑝𝑗

𝑮𝒂𝒑𝒋 < 𝜽?

Continue
iterations

Optimal 
solution

Yes

No

13
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α ≥ 𝐶
𝑗′
𝑜𝑝

Operational costs of sub problem

+σ𝑡𝑤,𝑡,𝑟,𝑖𝐶𝑜𝑛𝑣 𝜗𝑡𝑤,𝑡,𝑟,𝑖𝐶𝑜𝑛𝑣,𝑗′
max _𝑐𝑎𝑝

∙ 𝐾𝑟,𝑖𝐶𝑜𝑛𝑣,𝑗 − 𝐾𝑟,𝑖𝐶𝑜𝑛𝑣,𝑗′ Cutting plane of max. capacity restriction

+ … Cutting planes of further capacity restrictions (RES, PtH2, …)

+σ𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2(𝜗𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2,𝑗′
max _𝑑−𝑐ℎ ∙ 𝐾𝑟,𝑖𝑆𝑡𝑜𝐻2,𝑗 − 𝐾𝑟,𝑖𝑆𝑡𝑜𝐻2,𝑗′ Cutting plane of charging and discharging restriction

+ 𝜗
𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2,𝑗′
max _𝑣𝑜𝑙 ∙ 𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2,𝑗

𝑖𝑛𝑡𝑟𝑎,𝑚𝑎𝑥 − 𝑓
𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2,𝑗′
𝑖𝑛𝑡𝑟𝑎,𝑚𝑎𝑥 Cutting plane of max. filling level restriction

+ 𝜗
𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2,𝑗′
min _𝑣𝑜𝑙 ∙ 𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2,𝑗

𝑖𝑛𝑡𝑟𝑎,𝑚𝑖𝑛 − 𝑓
𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2,𝑗′
𝑖𝑛𝑡𝑟𝑎,𝑚𝑖𝑛 Cutting plane of min. filling level restriction

+ 𝜗𝑡𝑤,𝑡,𝑟,𝑖𝑆𝑡𝑜𝐻2,𝑗′
𝑒𝑛𝑑 ∙ 𝑓𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2,𝑗

𝑖𝑛𝑡𝑟𝑎,𝑒𝑛𝑑 − 𝑓
𝑡𝑤,𝑟,𝑖𝑆𝑡𝑜𝐻2,𝑗′
𝑖𝑛𝑡𝑟𝑎,𝑒𝑛𝑑 ) Cutting plane of final filling level restriction

∀ 𝑗′

▪ α is added to the objective function in the master problem

▪ Marginals incentivize change of capacity expansion and storage bounds

Master problem: Benders cuts

𝑗 – Current iteration
𝑗′ – Previous iterations
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Motivation – Model – Data and cases – Results – Conclusion and outlook

▪ Setting

− Two regions: DE and FR

− Four typical weeks

− tw_5, tw_22, tw_34 and tw_51

− 168 time steps per week (hourly)

− Simulation year 2045

▪ Cases

− Base: Closed optimization

− Benders: Decomposition with optimization of
capacities and seasonal storage bounds in the
master problem

Data and cases

▪ Scenario data

− DE: Grid Expansion Plan (B 2045) *

− FR: TYNDP 2022 – Distributed Energy **

▪ Technologies

− Endogenous capacity adjustment

− Electrolyzers (PtH2)

− H2 power plants

− Exogenous capacities

− Renewables (Wind onshore, W. offshore, PV, RoR)

− Nuclear (only in FR)

− Storage technologies (Batteries, Pump storage, 
Seasonal H2 storage)

* https://www.netzentwicklungsplan.de/sites/default/files/2023-01/Szenariorahmen_2037_Genehmigung.pdf
** https://2022.entsos-tyndp-scenarios.eu/download/ 15



Motivation – Model – Data and cases – Results – Conclusion and outlook

➢ Benders Decomposition case yields the same 
capacities as determined by the closed model

Selected Results

➢ Both cases result in nearly equal inv. and op. costs

➢ Lower runtime in model without Benders 
Decomposition

Case Runtime [MM:SS] Iterations

Base 00:22 -

Benders 05:53 330

Case Annualized invest. 
costs [bn. €]

Operational costs
[bn. €]

Base 24 115

Benders 24 115
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Motivation – Model – Data and cases – Results – Conclusion and outlook

▪ Method yields consistent seasonal
storage filling level

▪ Yearly reconstruction by adding

− Intra-period filling level of typical weeks

− Inter-period filling levels of all weeks

▪ Flat weeks caused by low intra-period
storage level changes

Seasonal storage filling levels: DE and FR
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Motivation – Model – Data and cases – Results – Conclusion and outlook

▪ Differences in course of storage filling
level

− No influence on system costs and 
endogenous capacities

➢ Different filling levels lead to an 
optimal solution

Seasonal storage filling levels: Base vs. Bender (DE)
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Motivation – Model – Data and cases – Results – Conclusion and outlook

Main findings

▪ Method enables…

− consistent storage optimization with Benders 
Decomposition and typical weeks

− parallel computing of typical weeks in the
subproblem

▪ Method beneficial…

− when computational burden of integrated model
is too high

− for coupling of separate investment and dispatch
models

Conclusion and outlook

Outlook

▪ Investigating techniques to accelarate
convergence

▪ Application to more complex models

− Higher spatial granularity

− Separate subproblems for electricity and gas 
systems

▪ Coupling with detailed infrastructure models of
project partners
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