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uncertainty by Andreas Dietrich, Christian Furtwängler* and Christoph Weber 

 

Abstract 

 

The integrated provision of energy among various energy sectors plays an important role in the 

process of decarbonisation of large energy systems. An important pillar is thereby the 

decarbonisation of the heat sector, where nowadays still a large percentage of heat supply 

originates from high-emission fossil fuels like coal or oil. 

In Central Europe, combined heat and power (CHP) plant applications, e.g. in local district 

heating networks, represent established methods to provide both electricity and heat at the 

same time, lowering overall fuel demands and lowering concomitant emissions. Heat pumps, 

converting electricity into heat, are also increasingly adopted by commercial (and household) 

customers. However, the optimal marketing and production scheduling of the heat and power-

providing portfolios under price uncertainty is a challenging and often complex task. The 

importance of proper uncertainty handling is underscored even more if the optimal dispatch of 

flexible technologies like storages needs to be considered. 

In this paper, we propose an enhanced multi-stage stochastic programming model for 

coordinated bidding in two sequential markets, namely the one-hour and the fifteen-minute 

electricity products in the German (day-ahead) spot market. 

Our study develops and applies a stochastic mixed-integer linear programming model for a 

virtual power plant, acting as a price taker in the mentioned electricity markets. The model 

determines the optimal bidding strategies for a heterogeneous portfolio of small gas-fired motor-

CHP units, heat pumps, electric storage heaters and battery storage systems. Thereby, we 

introduce a novel approach to construct piece-wise linear bidding curves for these markets, 

choosing their supporting points based on the simulated price paths. For the evaluation of the 

benefits of decision-making by help of stochastic modelling and optimization with different 

scenario numbers, we develop a new concept, the Benefit of Stochastic Optimization (BSO) 

and reflect and contrast our results with the computational burden of stochastic simulation, 

using the example of a real-world portfolio. 

We find that stochastic optimisation is a valuable optimisation method that may inform and 

improve individual marketer’s decision-making processes. However, the observable additional 
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benefits, i.e. compared to deterministic point forecasts, are limited in the investigated cases, 

while computational expensiveness increases significantly when adding further scenarios. 

Keywords : stochastic optimization, combined heat and power, virtual power plant, value of stochastic 

simulation 
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1 Introduction 

The ongoing transformation towards decarbonisation requires the addition of flexible 

generation and consumption technologies in the different sectors of the energy system. At the 

same time portfolio owners often struggle to stay profitable in liberalised electricity markets, 

such as the continental European electricity spot markets – given competitive pressure and 

prevailing marginal asset pricing (Sen, et al., 2006).  

On an everyday basis, this is even more evident for cogeneration units that provide both 

electricity and heat at the same time. The need for immediate satisfaction of heat demands 

often induces inflexibilities in electricity generation, resulting in must-run conditions even at 

unfavourable electricity price levels (Furtwängler & Weber, 2019). Therefore, electricity and 

heat storage technologies are useful means to decouple heat supply and demand, optimizing 

contributions generated from heat providing technologies. Additionally, heat pumps, that 

convert electricity to produce heat, add the possibility to provide heat cheaply at low electricity 

prices. However, unit commitment and dispatch of such flexible portfolios are not trivial and 

require sophisticated optimization methods (Havel & Simovic, 2013).  

Most notably, optimal trading for flexible power generation and consumption portfolios needs 

to account for electricity price uncertainty. However, many small portfolio owners like 

municipalities, who predominantly operate district heating grids and other heat systems, e.g. in 

swimming baths, often lack resources for elaborate market analysis. For such players, elaborate, 

but easily replicable methods are needed to capture price uncertainty and enable decision-

making in the uncertain market environment. A framework that seems very suitable in this 

context is stochastic optimization, as it enables decision-making in two- or multi-stage decision 

problems. As an additional pitfall, however, computation times of resulting stochastic models 

need to be limited in accordance to real-world market requirements (Dietrich, et al., 2018). 

Therefore, this paper aims to answer the following research questions: 1) How can the 

optimization of small-scale portfolios including power and heat resources be represented by a 

multi-stage optimization program describing the sequence of short-term Central European 

electricity markets? 2) How big are the benefits offered by a stochastic representation of price 

uncertainties if in parallel rigid restrictions such as local heat demands are imposed? 3) What 

are adequate approaches to obtain coherent and realistic assessments of the benefits of 

stochastic optimization in such a setting? Furthermore, we are interested in the impact of further 

installed flexibility on the additional value provided by stochastic optimization. 

The paper is structured as follows: After laying out relevant literature on stochastic optimization 

in auction-based electricity markets with cogeneration in Section 2, Section 3 focuses on the 
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methodology by deriving the stochastic decision structure in the markets under investigation 

and discussing the methodology of price scenario generation. Furthermore, a novel bidding 

curve generation method, the developed portfolio optimization model and the enhanced 

concepts for evaluation of the benefit of stochastic optimization are discussed. Section 4 then 

describes the characteristics of the real-world portfolio used for evaluation of the developed 

approach. Section 5 summarizes and discusses the obtained results, giving insight in the 

additional value of stochastic optimization compared to different benchmarks, such as 

optimization with perfect forecasts with and without a rolling horizon and deterministic 

optimization. Finally, Section 6 concludes by answering to the formulated research questions. 

2 Literature Review 

Deregulated electricity markets and the ongoing shift to electricity production from intermittent 

wind and solar power production in many countries have spurred the interest in strategies and 

methods to handle uncertainties within short-term electricity market bidding decisions among 

power producers and consumers. Accordingly, a broad variety of literature has emerged in this 

field. A general review on mathematical programming models that capture the optimal bidding 

problem in day-ahead auction markets is given in Frances & Kwon (2012), regarding stochastic 

programming models, an overview can be found in Fleten & Kristoffersen (2007) as well as in 

Boomsma, et al. (2014). Against the background of our paper´s specific portfolio, we identified 

the following strand of literature that focusses on integrated approaches for optimal CHP plant 

and heat storage operation planning and bidding in continental European electricity markets: 

De Ridder & Claessens (2014) propose a trading strategy for industrial CHP installations selling 

their power in the Belgian day-ahead and continuous intraday market. Their findings indicate 

that if bids are made on multiple markets, profits can be increased significantly and, compared 

to a deterministic approach, a trading strategy based on stochastic dynamic programming may 

lead to additional gains between 6.5 and 19%. The authors also demonstrate how assumptions 

about internal power consumption and CHP maintenance cost influence the trading strategy 

and its monetary outcome. As a shortcoming, correlation between prices on day-ahead and 

continuous intraday markets is not incorporated here which may overrate additional benefits 

from multiple market bidding strategies.  

Schulz & Werners (2015) develop a model to cope with investment decisions considering heat 

storage investments for CHP district heating systems operated in the German day-ahead spot 

market environment. In this paper, focus lies on the determination of the optimal storage 

capacity that is calculated in the first stage whereas optimal unit commitment is determined in 
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the second stage. Furthermore, different decision makers’ risk preferences are considered 

whereas the bidding process is not modelled and market prices are considered to be given. 

Zapata Riveros, et al. (2015) present a two-stage stochastic programming approach to evaluate 

three different bidding strategies in the Belgian day-ahead spot market for a virtual power plant 

including renewables and a CHP unit. As a particular feature, the imbalance market is taken 

into account and a rescheduling of the CHP unit for balancing forecast errors of renewable 

energy sources is possible within the second optimization stage. For this, piecewise linear 

shortfall cost functions are used to penalize imbalance volumes. Results from a case study show 

that the flexibility of a thermal storage can be used to accommodate forecast errors from solar 

and wind energy effectively and thus, portfolio imbalance costs can be reduced. 

In another paper, Han, et al. (2017) develop a multi-stage stochastic optimization model to 

derive trading strategies for a pool of variable renewables, dispatchable generators, flexible 

loads and storage devices in sequential day-ahead, intraday and balancing markets. Similar to 

Zapata Riveros, et al. (2015), their findings indicate that stochastic optimization and 

coordinated bidding of different units leads to higher flexibility provision, increased expected 

revenues and lower imbalances. Additionally, effects of risk control are examined here and it is 

shown that a lower risk exposure leads to decreased trading revenues.  

Kumbartzky, et al. (2017) investigate a three-stage stochastic programming problem for short-

term production planning of a CHP plant with heat storage, providing district heating. 

Comparable to our work, the technical conditions of a real-world application are considered 

within a case study. The suggested methodology illustrates that sequential trading in different 

short-term electricity markets, namely the German minute reserve and day-ahead spot market, 

is beneficial for the power plant operator. Regarding CHP plant operation planning and bidding 

in electricity markets, this paper also gives a comprehensive literature review including 

deterministic as well as stochastic modelling approaches. 

In a recent work, Ackermann, et al. (2019) introduce a two-stage stochastic method to derive 

stepwise bidding curves for offering strategies in the German day-ahead spot market. The model 

is applied to a district heating portfolio consisting of multiple CHP units, heat storage, gas 

boilers and an electric boiler. Their findings, also based on a real-world case study, cannot 

prove a clear advantage against a “flat-bidding” strategy that uses a deterministic modelling 

technique. Here, monetary benefits of stochastic optimization turn out small and may even 

become negative.  

A modelling approach rather similar to the multi-stage stochastic mixed-integer linear 

programming model presented in our paper can be found in Böhringer, et al. (2019). The 

authors determine optimal trading strategies for a flexible industrial consumer from a demand-
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side management perspective. For the German secondary control reserve and day-ahead 

market, a multi-market bidding problem is formulated and applied to a factory´s real load 

profile. Also, risk preferences are integrated into the optimization problem and it is shown that 

a risk-averse trading strategy leads to more robust results.  

With the exception of Zapata Riveros, et al. (2015) who use quarter hourly time intervals, above 

mentioned studies are based on an hourly modelling discretisation because trading decisions 

for the markets under study do not require a shorter time interval. However, some major 

methodological differences occur regarding price modelling techniques, the number of 

scenarios used for the stochastic optimization and the bidding curve construction. Furthermore, 

the number of stochastic variables is diverse because, besides imperfect information about 

market prices, some bidding problem formulations involve additional sources of uncertainty 

like electrical or thermal loads or fluctuating renewable production. On the application side, it 

becomes apparent that the periods under study mainly focus on daily or weekly time horizons. 

It is also noticeable that most of the reviewed literature focusses on the question of financial 

improvements from coordinated bidding in a sequential multi market environment under 

uncertainty, compared to non-coordinated bidding in single markets. However, in many cases 

the merit of stochastic programming models by itself, compared to deterministic approaches, 

also known as the value of stochastic solution (VSS), is not quantified1. Possible economic 

advantages that are commonly associated with stochastic optimization methods applied within 

the energy sector therefore remain unclear. Table 1 summarizes these key characteristics in 

detail for the papers discussed before.  

 
1 Note that the concept of VSS has to be rethought if it is to be applied in the context of a backtesting 
based on historical data as intended here, cf. at the end of this section and section 3.5. 
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Table 1: Key modelling characteristics of the literature under review 

Author(s)/ 
year 

Price modelling 
technique 

Considered 
markets 

Number of  
price scenarios 

Bidding method  
(curve form) 

Period  
under study 

Considered 
uncertainties 

VSS 
quantified 

De Ridder & 
Claessens 
(2014) 

not specified, 
based on PDF 

DA and ID not specified offer stack one day per 
month for 
one year 

market prices yes 

Zapata 
Riveros,  
et al. (2015) 

Non-parametric 
probabilistic 
approach  

DA and IM 10 for DA and for IM, 
in first stage, then 50 
for IM  

not specified, 
seems to be 
single-bid 

three 
seasonal 
weeks  

market prices, 
RE production 

no 

Schulz & 
Werners  
(2015) 

not specified, 
apparently 
historical price 
paths 

DA 8 for DA not specified, 
seems to be 
single-bid 

one week  
for unit 
commitment 

market prices, 
power and heat 
demand 

no 

Kumbartzky,  
et al. (2017) 

SARIMA  DA and RM 5 for DA, 
10 for RM 

not specified, 
seems to be 
single-bid 

five days market prices no 

Han, et al. 
(2017) 

not specified DA and ID 6 for DA,  
6 for ID 

scenario bidding 
constraints 

one day market prices, 
RE production 

no 

Ackermann,  
et al. (2019) 

Autoregressive 
Exogeneous 
(ARX) models 

DA 100 for DA piecewise linear 
curve vs. single-
bid 

four seasonal 
month  

market prices, 
heat demand 

yes 

Böhringer et 
al. (2019). 

Monte Carlo 
simulation 

DA and RM not specified scenario bidding 
constraints 

one week market prices no 

Abbreviations: DA: day-ahead market, ID: intraday market, IM: imbalance market, RM: reserve market, PDF: probability density 

function, RE: renewable energies, VSS: value of stochastic solution 

Our approach presented below goes beyond the previously discussed optimal bidding models 

for short-term trading of cogeneration units and virtual power plants in at least four aspects that, 

to the best of our knowledge, have not been considered in literature so far.  

First, we present a methodology for coordinated bidding into a sequence of hourly and quarter 

hourly day-ahead spot markets. In Germany and other continental European countries, trading 

in quarter-hourly market segments has become more attractive for electricity companies with 

flexible production and/or consumption portfolios due to higher price variability. Therefore it is 

of special interest to analyse potential benefits as well as possible drawbacks of stochastic 

optimization in this market environment.  

Second, for both markets, we also account for the specific bidding rules notably in terms of 

piecewise linear bidding curves. The construction of bidding curves is a key question within the 

optimal bidding problem and, until now, piecewise linear bidding curves have been modelled 
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as a simplified representation only. Consequently, optimal bid solutions are not guaranteed2. 

Therefore, our work introduces a novel approach to construct piecewise linear bidding curves 

by the definition of fixed supporting points for each hourly and quarter-hourly bidding curve.  

Third, the portfolio in our real-world case study exhibits a broad spectrum of flexibility options. 

Small CHP-units, heat-pumps, thermal storages, night storage heating and battery storage 

systems are believed to become important flexibility providers in the German electricity system. 

However, it is unclear if stochastic optimization models that account for technological diversity 

as well as for large numbers of units and individual heating demands are suitable for practical 

application. Within this context, this paper also addresses the problem of computation time.  

Finally, we believe that the use of type days/weeks/months may lead to imprecise findings 

regarding financial advantages of stochastic optimization techniques. For this, we extend the 

period under study to one full year and we also quantify the value of the stochastic modelling 

approach compared to a deterministic one explicitly. We therefore develop and apply a new 

concept, called the Benefit of Stochastic Optimization with a Rolling Horizon (𝐵𝑆𝑂𝑛
𝑅𝐻, 𝑛 

denoting the number of scenarios), which is suited to determine the benefits of stochastic 

modelling in a backtesting framework. This concept is explained in detail in section 3.5.  

3 Methodology 

In this section, we describe the methodological approaches applied within our case study. 

Subsection 3.1 gives an overview of the considered electricity spot market environment, 

relevant for the marketing decisions of the stochastic program decision structure, presented in 

subsection 3.2. Subsection 3.3 explains the stochastic electricity spot price modelling and the 

methodology utilized to generate the price scenarios that are applied in the stochastic portfolio 

optimization program, subsequently described in subsection 3.4. In subsection 3.5, the 

backtesting and its associated evaluation concepts for the benefits of stochastic representations 

of optimization problems under uncertainty used in Section 5 of this paper are introduced. 

Additionally, Appendix 1 gives insight into the model equations, including the mathematical 

transformation of the most relevant technical characteristics of the portfolio. An overall 

description of the real-world portfolio under study and its specific unit features is presented 

separately, see Section 4.    

 

 
2 Bidding curve constraints as modelled in Han et al. (2017), Ackermann et al. (2019) and Böhringer et 
al. (2019) are not based on supporting points. Here, if the market price realisation falls between the price 
scenarios, optimal production or consumption schedules are not defined. 
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3.1 Relevant marketing decisions with a sequence of day-ahead spot 

market auctions  

In our study, we assume the portfolio owner to bid power supply and/or demand into two 

subsequent electricity spot markets. Such a sequence has notably been established in Germany, 

namely the EPEXSPOT day-ahead (DA) auction3, where electricity products with highest time-

resolution are hourly products, and the EPEXSPOT intraday opening (IDO) auction, which 

represents the first opportunity to trade quarter-hourly products. Recently, quarter hourly 

products and corresponding auctions have also been introduced in other continental European 

countries such as France, Belgium, the Netherlands and Austria (EPEXSPOT, 2020). To reduce 

the complexity of the resulting bidding problem, we neglect all up-front long-term delivery 

contracts as well as block products, day base and day peak products4.  

For both, DA and IDO auctions, market participants have to submit their power bids in 

advance by means of a supply curve, consisting of a price/quantity combination for each 

product. Notably, bidders need to define a finite number (up to 256) of electricity spot price 

levels as supporting points for their price/quantity curves. These price levels, serving as the 

supporting points of the bidding curve, cannot be altered for different hours of the day. 

Between these supporting points, bid amounts are calculated by linearization, resulting in a 

piecewise-linear bidding curve for each considered product. It is required that these curves are 

monotonic increasing, but not necessarily strictly monotonic increasing, i.e. it is possible to 

assign the same marketed quantity to various neighbouring price levels (EPEXSPOT, 2019). 

For the German market, the sequence of market decisions is as follows: First, the DA auction is 

held daily on 12 am for the following day. Results of the DA auction are published between 

12:55 am and 1:50 pm. Therefore, the quantities allocated in the DA auction are known to 

market participants before they place their bids for the subsequent IDO auction on 3 pm. The 

results of this auction are published as soon as possible from 3:15 pm (EPEXSPOT, 2019). After 

the results of this auction are published, continuous intraday trading of both hourly and quarter-

hourly products is possible. However, we assume that small market participants, managing 

small portfolios, will not be acting in this market due to a lack of dedicated resources. Instead, 

the resulting quantities of the DA auction and IDO auction will be considered as fixed hourly 

and quarter-hourly trading positions in unit commitment and dispatch optimization for the 

following day. 

 
3 The German DA auction also covers the market area of Luxembourg. Until 30th September, 2018, also 
Austria was part of this common market.  
4 Day Base product is referring to a 24h-block containing all hours of one day, Day Peak product to 
hours 8-20. On July 1st, 2019, there exist 17 further block products on the EPEXSPOT Day-Ahead market, 
as well as 6 further block products of the EPEXSPOT Intraday Auction, bundling different hours and 
quarter-hours of the day (EPEXSPOT, 2019).  
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3.2 Stochastic Decision Structure  

According to this market environment, the sequence of implemented stochastic programs in this 

paper consists of three subsequent optimizations: 

1. Optimization of the day-ahead bids represented by jointly submitted hourly bidding 

curves (set of hourly bidding curves)  

2. Optimization of the bids for the intraday opening auction, represented as set of quarter-

hourly bidding curves given the revealed actual DA auction outcome and 

3. Optimization of asset operation (unit commitment and dispatch) given both the revealed 

DA and IDO auction outcomes. 

Figure 1 shows an exemplary piece-wise linear bidding curve and how the traded volumes for 

each individual hour and quarter-hour are determined therefrom based on the realized market 

prices. The bidder’s individual piece-wise-linear bidding function is described by the 

(optimized) coordinates of supporting points of the bidding curve (denoted here by the bid 

price 𝑃ℎ,𝑖ℎ
𝐷𝐴,𝑙𝑏 and the bid quantity 𝑝ℎ,𝑖ℎ

𝐷𝐴,𝑙𝑏 at the left boundary of the bidding curve interval 𝑖ℎ for 

an hourly product ℎ) and evaluating the bidding function at the realized spot price provides the 

marketed amounts. 

 

Figure 1: Bidding curve and identification of the allocated quantity with realized spot price. 

The flow chart describing the sequence of market decisions and their corresponding 

optimization runs can be found in Figure 2. The overall marketing problem thus consists of 

three optimization runs, with new information revealed after the first and second run. 
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Figure 2: Flow chart of the sequence of the implemented programs. 

The stochastic structure for the optimization runs is depicted in Figure 3 for the first and the 

second optimization run, and in Figure 4 for the third. The optimization also takes the second 

half of the auction day itself into account, as the asset dispatch after noon of the auction day 

might still be adjusted by the asset operator. As all price and sales quantity information for 

these twelve hours is already known, these hours are part of the deterministic root node of the 

scenario tree. The hours and quarter-hours of day 2 are belonging to the hourly and quarter-

hourly products whose bidding curves are being optimized5. Here, n market price scenarios are 

utilized for different possible market outcomes. This way, marketed quantities for a variety of 

different price developments are identified and inform the decision on the bidding curves to be 

submitted. The methodology of price scenario generation is discussed in section 3.3 of this 

paper. Day 3 is also explicitly considered with bidding curves of its own such that the plant 

states and storage level management at the transition between days 2 and 3 are accurately 

represented.  

 

 
5 Day 2 denotes the day ahead for which the sales quantities are decided upon by the auctions staged on 
day 1.  
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Figure 3: Stochastic tree structure of 1st  and 2nd  optimization. 

After the second optimization, marketed quantities have been fixed for both hourly and quarter-

hourly products of day 2. During dispatch optimization, the deterministic root node therefore 

extends to these hours and quarter-hours, as depicted in Figure 4.  

 

Figure 4: Stochastic tree structure of 3rd  optimization. 

This three-stage optimization procedure is repeated for each day of the backtesting period. The 

corresponding rolling planning application including the transition between days is described 

in more detail in Section 3.5.  
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3.3 Modelling of market price uncertainty and determination of price 

scenarios 

To obtain a stochastic representation of the electricity price as an uncertain variable from which 

scenarios may be derived, we apply the approach of Pape, et al. (2017), who investigate the 

dynamics of hourly electricity prices of the German DA auction as a panel of 24 cross-sectional 

hours. Their approach may be summarized as follows: 

(i) Treat the time series of spot prices as panel of individual hours and transform the 

original values by an adjusted log-transformation. 

(ii) Determine the main deterministic influences and the residuals by means of an OLS 

(Ordinary Least Squared) regression. 

(iii) Map the residuals’ empirical distribution to a normal distribution; respectively map 

the empirical cumulative distribution function of transformed prices to the inverse of 

the cumulative standard normal distribution.  

(iv) Identify common factors of hourly prices by means of a Principal Component 

Analysis (PCA). 

(v) Model lagged effects of price level and price volatility by an ARMA(1,1)-

GARCH(1,1) process. 

(vi) Use a rolling window technique to estimate prices using the last 173 days as 

calibration period. 

(vii) For each day, use Monte Carlo Simulation to generate 1000 independent price 

paths. 

In this paper, the exact same approach is applied to model the quarter-hourly products of the 

IDO auction instead of the hourly DA auction prices. Subsequently, a standard k-means 

algorithm6 is used to reduce the number of scenarios, with k denoting the number of resulting 

scenarios after reduction. We choose k=1 for a deterministic price forecasting reference7, and 

higher k’s for stochastic representations to introduce in our stochastic optimization model, 

described in sections 3.2 and 3.4. The probabilities of the generated scenarios result as the 

number of scenarios of the original Monte Carlo simulation that are added to the respective 

clusters, divided by the total number of Monte Carlo simulations.  

 
6 The k-means clustering concept was first developed by MacQueen (1967), the standard algorithm 
solving the k-means problem was developed in Lloyd (1982). In our analysis, we use the standard k-
means function provided by MATLAB version R2019a. 
7 A deterministic price forecasting reference is needed to determine the value added by solving the 
stochastic representation of the optimization problem in contrast to just modelling uncertainties by 
means of point forecasts. The underlying concepts, differentiating between optimization problem 
representations with and without a rolling horizon, as well as the proposed evaluation concepts of the 
Expected Value of Perfect Information with a Rolling Horizon (𝐸𝑉𝑃𝐼𝑅𝐻) and the Benefit of Stochastic 
Optimization with a Rolling Horizon and 𝑛 scenarios (𝐵𝑆𝑂𝑛

𝑅𝐻) are explained in detail in Section 3.5. 
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To capture the effects of unusual price developments that are often eliminated during scenario 

reduction and to achieve a higher coverage of the underlying price distribution by the reduced 

scenarios, for the stochastic cases (k>1), we manually add two extreme price scenarios. They 

contain the historic highest and lowest prices, measured for the respective quarter-hourly 

product.  

Finally, the average of four quarter-hourly products belonging to one hour is calculated and 

defined as the price scenario forecast for the respective hourly products of the DA auction. This 

solves arbitrage issues between hourly and quarter-hourly products during the 1st optimization 

that would arise if both products were modelled separately. More precisely, if the mean of the 

quarter-hours does not equal the hourly price, an optimization model will be able to generate 

(possibly infinite) additional gains from buying the product(s) with the lower price and re-selling 

the other product(s) covering the same timeframe at the higher price8, unless measures to 

prevent arbitrage are undertaken in the optimization model. Those, however, may again cause 

undesired side-effects9.  

The lack of individual modelling of hourly products to prevent arbitrage-related issues leads to 

a lack of prediction accuracy for the hourly products in the DA auction, as for example 

information sets differ due to the time lag of three hours between these two auctions on the 

same day. This effect, however, is very limited if this approach is compared to a separate 

modelling of Day-Ahead and Intraday opening auction prices. A short analysis of forecast 

accuracy parameters for both products, if modelled jointly or separately, can be found in Table 

2. The model on average slightly underestimates both DA and IDO prices and struggles to 

capture the magnitude of price deviations of the first (denoted as qh1) and last quarter-hour 

(denoted as qh4) from the mean price of the corresponding hour. The approach performs better 

for hourly products than for quarter-hourly products. The overall price accuracy, however, is 

reasonably good compared to other time-series-based modelling approaches. The most obvious 

example applying the same method is the above-mentioned original paper by Pape, et al. 

(2017), where the authors apply various variations of this approach to 2015 price data, 

 
8 For example, if only the sum of both trading positions is restricted by the minimum and maximum 
production and consumption of the underlying portfolio, the model is unbounded, if prices are not 
arbitrage-free. If the marketed quantities in both markets are each restricted by the minimum and 
maximum production and consumption of the underlying portfolio, the problem is not unbounded, but 
there still is room for arbitrage up to said amounts.   
9 As a very basic example, if we do not allow negative sales (buying) to the individual markets at all, we 
restrict our possibilities in trading on both markets, as we are not able to react to individual quarter-
hourly prices lower than our marginal cost of electricity production. Ideally, the optimization model 
wants to re-buy said amounts previously sold for the corresponding hourly product (assuming said price 
for the hourly product exceeded our marginal cost). Therefore, from the point of view of the optimization 
model, it would often be a better strategy to “wait” for the product with the highest time resolution and 
not market the hourly product at all – which leads to an unnecessary restriction of the solution space and 
may exclude the optimal solution (without arbitrage) of the original problem.  
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obtaining a MAE between 4.06 and 4.25 €/MWh for different specifications of their estimation 

model for the DA auction prices. While there are no papers covering quarter-hourly forecasts of 

the same market for the exact same timeframe (01.10.2016-30.09.2017), Kath & Ziel (2018) test 

a similar standard forecasting method on a training period from 08.10.2015 to 06.10.2016 (364 

days) and create forecasts for the period between 07.10.2016 and 31.05.2017, partly using 

additional information from the Swiss day-ahead auction taking place two hours ahead of the 

EPEXSPOT DA auction. In this setting, simple OLS optimization including dummy variables for 

some days of the week and additional fundamental wind and load information leads to MAE 

values of 4.26 €/MWh, respectively 4.17 €/MWh if information about Swiss auction results is 

included. However, without the prior elimination of selected dummy variables, this approach 

yields MAE values of over 7 €/MWh. Kath & Ziel (2018) then enhance their results by making 

use of a combined lasso and ridge regression, lowering MAE values below 4 €/MWh. Given 

that the approach by Pape, et al. (2017) uses only prices and weekday dummies as explanatory 

variables, however, the still considerable performance results suggest that this simpler and less 

data-reliant approach should be more adequate for the given research question of this paper.     

Table 2: Prediction accuracy of chosen price modelling approach. 

 Mean Error  

[€/MWh] 

Mean Absolute Error  

[€/MWh] 

Modelled prices  Ø qh1 qh2 qh3 qh4 

IDO auction -0.66 5.7

5 

6.18 5.35 5.33 6.13 

DA auction (as mean of IDO auction) -0.69 4.7 - - - - 

DA auction (modelled separately) -0.26 4.6 - - - - 

 

Figure 5 shows the resulting quarter-hourly price scenarios with k=60 for a given two-day 

period in the dataset without the manually added extreme price scenarios. Figure 6 depicts 

matching hourly price scenarios. The first 12 hours, respectively 48 quarter-hours thereby 

represent prices already known from the previous auction rounds as described in the previous 

subsection. As can be seen, the characteristic “sawteeth” structure of quarter-hourly German 

IDO auction prices (Pape, et al., 2016) (Pape, et al., 2017) is replicated quite well by the 

chosen model.  
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Figure 5: Quarter-hourly price scenarios for example day in autumn 2016 (without extreme price 
scenarios) 

 

Figure 6: Hourly price scenarios for example day in autumn 2016 (without extreme price scenarios) 

 

3.4 Portfolio and Bidding Model 

The price scenario paths are fed into a mixed-integer linear optimization model for each 

optimization stage (MILP). This model extends earlier work in the dissertation thesis of 

Kempgens (2018) by the consideration of quarter-hourly products and further technical 

restrictions, i.e. including the modelling of heat storages and heat pumps. Contrary to 

Kempgens (2018), the provision of balancing power is not considered in our approach, because 
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the portfolio assets (cf. section 4) do not meet prequalification criteria for participation in the 

German reserve markets, due to their size.10 

The optimization model implements a unit commitment model, including the majority of the 

constraints enumerated by Kempgens (2018). Her model in turn is an extension of the models 

described by Thorin, et al., (2005), Brand & Weber (2005) and Woll & Weber (2006). The 

comprehensive model description can be found in the Appendix of this paper. 

The objective function of the portfolio optimization problem corresponds to the difference of 

realized revenues and operational cost. Revenues come from the two mentioned electricity spot 

markets (day-ahead and intraday opening auction) and, for some CHP units also from 

additional support mechanisms such as the German Renewable Energy Act (“Erneuerbare-

Energien-Gesetz”, EEG). Depending on the flexibilities in place, operational cost arise from fuel 

cost in case of gas-fired CHP systems and gas boilers, cost for alternative district heating supply 

or from expenses for power-consumption of the electric heating systems and for battery 

charging. Within this context, it is noteworthy that only the aforementioned spot market prices 

are included in the cost for electricity consumption or battery charging. Additional cost 

components arising from grid fees, taxes or other regulated electricity price components are left 

out of consideration.  

The market outcomes of the DA and IDO auctions, i.e. the marketed quantities, are calculated 

on the basis of the realized spot prices by evaluating the bidding curves obtained in the 

previous optimization before starting the next optimization run, as described in Section 3.2. 

The supporting price points for the hourly and quarter-hourly bidding curves are determined 

based on a clustering of all simulated electricity prices. These are clustered using a k-means 

algorithm, with k corresponding to the number of intervals of the resulting bidding curves, both 

for the quarter-hourly and the hourly prices. The bidding curves’ interval boundaries are 

computed as the mean of the highest price realisation 𝑝𝑛
𝑚𝑎𝑥 in price cluster 𝑛 and the lowest 

price realisation 𝑝𝑛+1
𝑚𝑖𝑛 of the neighbouring price cluster 𝑛 + 1 with 𝑐𝑛+1 > 𝑐𝑛 for the centroid 

values 𝑐𝑛 and 𝑐𝑛+1 of the two clusters (cf. Figure 7). This results in 𝑁 − 1 boundaries for 𝑁 

bidding curve intervals. 

 
10 Minimum reserve bid sizes in the years 2016 and 2017 amounted to 1 MW for Frequency 
Containment Reserve (FCR) (Bundesnetzagentur, 2011), respectively 5 MW for automatic and manual 
Frequency Restoration Reserve (FRR-a, FRR-m) (Bundesnetzagentur, 2011) (Bundesnetzagentur, 2011).  
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Figure 7: Interval boundary calculation between two price clusters. 

The left boundary of the lowest and the right boundary of the highest interval need to be set 

manually. The chosen parameters are listed at the beginning of Section 5. Finally, each price 

realisation within the simulated spot market price paths is assigned to the respective resulting 

price interval it is located in. 

3.5 Evaluating the merits of stochastic programs with rolling horizon in a 

backtesting approach 

The backtesting described in this subsection aims to assess the benefits of a stochastic 

representation of uncertain parameters along with a corresponding stochastic optimization 

compared to a deterministic uncertainty modelling and optimization approach based on a 

sufficiently long sequence of observations.  

The stochastic program described in the previous sections is therefore applied for a whole year 

in said backtesting approach, with the year in this case ranging from October 1st 2016 to 

September 30th 2017. The sequence of optimizations, information updates and parameter 

fixations are described in Figure 8 below. For each day in the investigated year, three- 

optimization runs as described in section 3.2 are carried out.  

 



 

17 

 

Figure 8: Flow chart of the sequence of stochastic programs during a rolling-horizon backtesting. 

After the first and second daily optimization, the resulting bidding curve is evaluated using the 

actual historical price realisations of the respective time-periods, following the clearing 

mechanism described in Figure 1 (cf. Section 3.2). The determined allocated quantities after the 

first and second optimization remain fixed and thus enter all following optimizations of the 

same day as a parameter.  

After the 3rd daily optimization (unit commitment and dispatch, see Subsection 3.2), trading and 

operation decisions for the first 24 hours/96 quarter-hours including storage levels are saved, 

with the storage levels after quarter-hour 11:45-12:00 on day 2 serving as starting storage levels 

for the subsequent optimization period11. Also the trading results for the hours 25 to 36 (and the 

corresponding quarter hours) are saved and are taken as given in the next daily iteration loop, 

i.e. for 𝑑 + 1. From 𝑑 = 2 onwards, the sold electricity quantities for the first 12 hours/48 

quarter-hours are hence known from the auctions held on the previous day and remain fixed. 

 
11The transition between subsequent auction days is realized by saving all marketing and dispatch 
decisions from noon of day 1 until noon of day 2 (t01-t24, respectively q001-q096) after the third 
optimization. 
The marketed electricity amounts from both the DA and ID Opening Auction from noon of day 2 until 
midnight of day 2 (t25-t36, respectively q097-q144) remain fixed. The time-horizon subsequently 
advances by 24 hours such that for example hour 25 becomes hour 1 of the next iteration and the 
sequence starts again, with former day 2 becoming day 1, day 3 becoming day 2, and so on.  
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Storage levels at the end of the 60-hour optimization period are assumed to be zero for every 

optimization period 𝑑 ∈ {1, … , 365}12. 

The focus of the evaluation provided in Section 5 is on the additional value generated for the 

decision maker (in our case a small power and heat portfolio owner) by stochastic 

representation of the three-step electricity marketing decision problem described in Section 3.2. 

Therefore, concepts for assessment of decision-taking under uncertainty are needed, 

considering the described rolling-window approach and both deterministic and stochastic 

problem representations. We thus propose the following concepts and metrics for our following 

analysis13: 

In a world without uncertainty, that means a world with perfect information, perfect decisions 

can be taken. There is no need for representation of uncertainty, and the realised values of 

otherwise uncertain parameters may enter an optimization problem directly. Thus, there is no 

need for a non-deterministic representation of this optimization problem, either. However, in 

the problem investigated in this paper, we need to differentiate between perfect information 

with (𝑷𝑰𝑹𝑯) and without a rolling horizon (𝑷𝑰). Under perfect information, a rolling horizon 

approach such as the one described above, will always be outperformed by a full intertemporal 

optimization, as not all intertemporal dependencies between subsequent optimization days, i.e. 

stemming from different optimal storage operation decisions are accounted for within each of 

the single optimization runs with limited planning horizon. Hence the outcomes in a sequence 

of daily optimizations will be different from the results of an (integral) yearly optimization 

without consideration of a rolling horizon. This happens although in both cases perfect 

information about the parameters (prices) is available.  

 
12 At the beginning of the very first optimization period of the backtesting (𝑑 = 1), storages are assumed 
to be charged at 50% of their maximum filling level with all units being switched off (no traded amount 
in the first 12 hours, respectively 48 quarter-hours). In these 12 hours, heat demand is also assumed to be 
zero to ensure feasibility.  

For the storage level at the end of the 60-hour optimization period, no final value is assigned as such 
value is difficult to anticipate. Yet the extension of the planning period to 60 hours should suffice to 
eliminate major end-of-horizon effects for the considered small storages. 

13 The concepts and evaluation metrics introduced here are by our understanding related to, but different 
from the concepts and metrics established by Birge & Louveaux (2011), namely concepts such as the 
Expected Value of Perfect Information (EVPI) and the Value of Stochastic Solution (VSS, cf. Literature 
Review in Section 2), that are often applied within stochastic optimization contexts. We find our own 
definition for two reasons: Firstly, these concepts were defined and applied for a specific problem type 
(recourse problems, i.e. problems, where decisions may be adjusted at a later stage) and in a setting 
without consideration of a rolling-horizon and decision variables with time-interdependencies in 
between said different time horizons. Secondly, we take a different perspective, as we are interested in 
the long-term benefits of a short-term decision-making approach by help of stochastic optimization, 
rather than focusing on an objective function value increase for a one-time decision. Therefore, we 
define our parameters directly on our backtesting results. 
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In the following, we analyse the outcome in the rolling-horizon cases by means of an ex-post 

computation of the resulting “objective function value” of the whole year, after all daily 

optimizations are completed. Note that this value does not refer to the optimized objective 

value of a single yearly optimization but is the result of a multitude of daily optimizations whose 

results are merged to an annual schedule after the last optimization is completed. 

In the result section of this paper, both perfect information outcomes are stated – however, the 

outcome in the case of 𝑷𝑰𝑹𝑯 is a more appropriate benchmark when evaluating the quality of 

daily decision taking under uncertainty (with and without stochastic representation), as the 

differences in the outcomes between cases with uncertainty and the PI case contain both the 

effects of parameter realisation uncertainty and myopic decision-making14. 

In our case, the 𝑃𝐼𝑅𝐻 solution can be computed by solving all three daily optimization runs 

with real market prices instead of price simulations. In contrast, the 𝑃𝐼 solution of the yearly 

decision problem can be identified by solving a single deterministic optimization given real 

market prices over all time-steps of a year with simultaneous optimization over all operation 

variables and disregarding the bidding curves. 

In the real-world decision-making situation of a small portfolio holder, perfect information does 

not exist, but uncertain realizations of prices or other parameters need to be accounted for in 

marketing decisions, and thus need to enter the daily optimization model. The straightforward 

way to identify the (ex-ante) optimal marketing decision is to solve the expected value problem 

with rolling horizon (𝐸𝑉𝑅𝐻). Here the expected value (forecast) of each uncertain parameter is 

entered into a deterministic optimization model. In the case investigated in this paper, this is 

the expected electricity price path forecast resulting from the price path modelling approach 

described in Section 3.315. The value added by perfect information (respectively lost by not 

 
14 One should note that this myopic decision-making is by no means the result of a faulty planning 
process or market design, but a necessity. Short-term uncertainties in the energy markets, including, but 
not limited to, short-term changes in electric load and renewable production, or heat demand 
uncertainties, are creating the need for short-term energy planning and action in the respective markets. 
Modelling the sequence of all short-term electricity markets that are included in this paper while 
representing uncertainty for a whole-year in a joint multi-stage optimization problem would result in a 
problem with more than 1,000 stages and would not be solvable due to the curse of dimensionality and 
the resulting computational expensiveness. Therefore, a rolling horizon approach such as the approach 
described here is needed. 
15 To be precise, the price paths entering the optimization code are in this case created by applying the k-
means algorithm on the 1000 Monte Carlo simulations of price paths, using k=1. The resulting price path 
thus represents the path of average price realizations over all simulated price paths, rather than the out-
of-sample forecast values of the time-series forecast of each product. However, there is virtually no 
difference between these two tuples due to the high number of Monte Carlo simulations entering the k-
means algorithm. 



 
 

20 

having perfect information) is in the following defined as expected value of perfect information 

with a rolling horizon (𝐸𝑉𝑃𝐼𝑅𝐻) 16:  

𝐸𝑉𝑃𝐼𝑅𝐻 = |𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑃𝐼𝑅𝐻) − 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝐸𝑉𝑅𝐻)| (1) 

This value can furthermore be used as benchmark for stochastic representations of the 

optimization problem under uncertainty. If the uncertainty of parameter realizations is 

modelled by scenarios with an assigned probability, we can solve the corresponding stochastic 

optimization problem.  

For the stochastic optimization problem at hand, the modelled uncertain parameters are the 

prices. The optimized bidding curve in the stochastic case takes additional price realization 

possibilities (modelled accordingly to the historical price distribution) per time-step into 

account, leading to a more differentiated, and thus better suited piece-wise linear bidding 

curve.17.It is possible to compute the annual outcome of these daily stochastic optimizations 

(SO). We define 𝑺𝑶𝒏
𝑹𝑯 as the stochastic optimization problem with a rolling-horizon and 𝒏 

scenarios. The so called benefit of stochastic optimization with a rolling horizon and 𝒏 

scenarios (𝑩𝑺𝑶𝒏
𝑹𝑯) is then obtained by subtracting the annual outcomes of the stochastic 

problem with 𝑛 scenarios and the 𝐸𝑉𝑅𝐻 problem18: 

𝐵𝑆𝑂𝑛
𝑅𝐻 = 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑆𝑂𝑛

𝑅𝐻) − 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝐸𝑉𝑅𝐻) (2) 

Note that the benefits of stochastic optimization, as defined here, depend not only on the 

stochastic optimization (and the corresponding number of scenarios), but also on the quality of 

the probabilistic price forecasts and the appropriateness of the scenario reduction approach 

applied to the original Monte Carlo price simulations. A detailed evaluation of the impact of 

these algorithms is yet beyond the scope of this paper. 

4  Characteristics of the portfolio under study 

This section describes the key technical and economical characteristics of the portfolio 

considered within our case study. The portfolio mainly consists of units which supply heat to 

municipal or residential uses. These encompass motor-based CHP systems and electric heating 

 
16 The problem investigated in this paper is a maximization problem, therefore 𝐸𝑉𝑃𝐼𝑅𝐻 is always greater 
than or equal to zero, even without taking the absolute value of the difference 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑃𝐼𝑅𝐻) −
𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝐸𝑉𝑅𝐻). However, by using the absolute value in this definition, the formula may also be 
directly applied to the case of a minimization problem.  
17 As a result, the stochastic optimization is expected to yield a different, better outcome than the 
deterministic case, 𝐸𝑉𝑅𝐻. 

As noted above (cf. Footnote 15), 𝐸𝑉𝑅𝐻 is obtained by applying the k-means clustering with k=1 to the 
Monte Carlo price simulations from our underlying quarter-hourly electricity price distribution. For k>1, 
stochastic scenario price paths are created that we can enter into the optimization model. 
18 By design, 𝑆𝑂1

𝑅𝐻 = 𝐸𝑉𝑅𝐻, so 𝐵𝑆𝑂1
𝑅𝐻 = 0. 
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systems like heat pumps and electric storage heaters. As an additional component, a battery 

storage system is considered. Figure 9 provides an overview of the studied case. We base the 

portfolio on actual units analysed in the field test of the research project “Stadt als Speicher” 

(“city as a storage”)19. Therefore, specific technical asset data and heat demands are used. A 

more detailed description is given in Dietrich, et al. (2018) and Dietrich (2020). The formal 

implementation of the unit characteristics and constraints is described in the Appendix to this 

paper. 

 

Figure 9: Schematic overview of the case study 

 

4.1 CHP systems based on internal combustion engines 

Three CHP systems using gas-fired internal combustion engines are part of the portfolio. System 

No. 1 provides heat for a large public swimming pool. Here, a district heating grid can deliver 

alternative heat supply; yet, the CHP system is not designed for feeding back heat to the grid. 

System No. 2 produces heat for a small public swimming pool and No. 3 is connected to a 

local heat network with 18 households. For systems No. 2 and 3, gas boilers serve as backup 

and/or as suppliers for peak heat demands.  

Our modelling approach takes into account the basic technical nameplate features such as 

minimum and maximum generation capacities, fuel efficiencies, and (for CHP units) the CHP 

coefficients in terms of a constant power-to-heat ratio as well as minimum operation (one hour) 

 
19 The research project was carried out between 2013 and 2018 in the German state of North-Rhine 
Westphalia. It was investigated how existing but unused storage facilities in cities can be flexibly 
operated in practice and which technical and regulatory hurdles have to be overcome to achieve this. 
During a one year field-test, a portfolio of power producers, consumers and storage devices was 
controlled according to optimized schedules. Special focus was laid on the development of a modeling, 
optimization and forecasting environment. 
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and shut-down times (one quarter hour). Regarding thermal storages, a simplified procedure is 

used to determine the relevant technical parameters: For the swimming pools, storage 

capacities are derived from the pool volume, the specific heat capacity of water and from a 

maximum permitted water temperature variation of ± 0.5 °K. This is assumed to be acceptable 

from a customers’ point of view. Furthermore, it is assumed that thermal storage losses 

contribute to the overall heating of the swimming pool and therefore, effective storage losses 

are zero. In contrast, storage losses are factored in for CHP system No. 3 where a 3,000 litres 

conventional hot water storage unit is connected to a small local heating network. It is 

noteworthy that network losses are assumed to be constant and therefore are part of the heating 

demand. Also, for CHP system No. 3, a variation of the heat network´s operating temperature 

that may provide additional storage capacity is not foreseen within our modelling approach.  

Table 3 provides an overview of the key technical parameters of the CHP systems. 

Table 3: Key technical parameters of the CHP systems 

  CHP system 

Technical parameter  No. 1 No. 2 No. 3 

Max. | Min. electrical power CHP unit [kWel] 420 | 21020 50 | 25 19 | 10 

Power to heat ratio CHP unit [-] 0.78 0.63 0.61 

Fuel efficiency CHP unit [%] 86.8 87.8 92.6 

Fuel type CHP unit [-] natural gas natural gas biogas 

Max. | Min. thermal power boiler [kWth] 1,000* | 0 460 | 0 2 x 170 | 0 

Fuel efficiency boiler [%] 100* 90 96 

Fuel type boiler [-] district heat* natural gas natural gas 

Thermal storage capacity  [kWhth] 4,946 791 81 

Thermal storage efficiency  [%] 100 100 95 

Annual heating demand  [MWh] 3,518 1,233 648 
* Alternative/peak supply from district heating grid 
 

The relevant economic parameters for the CHP systems are shown in Table 4. Prices for fuel 

and district heating supply are derived from individual contracts, based on net values and valid 

 
20 Within our implemented modelling approach, minimum power generation of CHP system No.1 has 
been set to zero. When submitting linearized bidding curves to the DA and IDO auctions, as described in 
Section 3.4, it is possible (however not very likely) that an electricity amount is marketed (after 
consideration of actual price outcomes) that is not physically feasible in the dispatch optimization, i.e. 
due to minimum production restrictions preventing a convex production range. In a real-world scenario, 
such a position may still be corrected in the continuous intraday market. As we neglect this market in our 
approach, we decided to neglect the minimum production capacity of the biggest CHP unit in our 
portfolio to ensure feasibility.  
The optimization triggered penalties associated to slack variables in the electric balance equation (due to 
over-production) several times during the yearly runs before this relaxation was introduced. However, the 
effects on total calculated contribution margins by this relaxation should be limited – and affect different 
scenario cases in a similar manner. 
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for the modelling period under consideration. Differences in prices also result from different 

fuel-taxation rules, applied under the German law for the operation of CHP units and gas 

boilers. Additionally, specific regulatory issues come into effect on the revenue side: Because 

CHP unit No. 3 is fired with biogas, the Renewable Energy Act (EEG) guarantees a feed-in 

remuneration as a premium on top of spot electricity prices: The remuneration is calculated 

retrospectively for each month as the difference between the feed-in tariff guaranteed by law 

(here: 224.2 €/MWh) and the average of the hourly spot market prices (monthly market value). 

However, the actual operator revenues result from observed market prices during feed-in with 

the premium being added on top. Thus, if operation focuses on hours with prices above the 

average, revenues can exceed the feed-in tariff. Consequently, incentives are given to produce 

electricity in times of scarcity which is the intention of this remuneration mechanism. 

Furthermore, CHP units No. 1 and No. 2 receive a compensation from the grid operator for 

avoided grid cost because it is stipulated in the German regulations that electricity production 

from distributed CHP units is consumed locally and therefore costs for operating and extending 

upstream grids are avoided.  

Table 4: Key economical parameters of the CHP systems 

  CHP system 

Economical parameter (net values)  No. 1 No. 2 No. 3 

Fuel price CHP unit [€/MWh] 31.6 32.9 77.5* 

Fuel price boiler [€/MWh] 37.9** 38.4 38.9 

Revenues from avoided grid fees [€/MWh] 1.6 7.8 - 

Revenues from feed-in remuneration [€/MWh] - - 224.2 
*Price for gas from biomass 
**Price for alternative/peak supply from district heating grid 
 
 

4.2 Electric heat pumps and storage heaters 

Regarding electric heating systems, our study draws on four exemplary households, supplied by 

heat pumps and conventional solid-state (magnesite) electric storage heaters. The heat pumps 

are equipped with water-based thermal storages and a supplementary 9 kW heating rod and 

they also cover demand for domestic hot water. Furthermore, heat pumps No. 1 and No. 3 are 

brine-water systems, characterised by a higher efficiency (coefficient of performance, COP) 

compared to heat pump No. 2 which is an air-water system. Even though all mentioned heating 

systems are subject to minimum power consumption and minimum operation time constraints 

during their practical application, those restrictions are not taken into consideration here. This 

is appropriate given the flexibility of heat pumps to turn on and off within one planning interval 
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- and thus energy consumption within that interval may take arbitrary values. Table 5 provides 

an overview of the electric heating systems´ key technical parameters. 

Table 5: Key technical parameters of the electric heating systems 

 
Technical parameter 

 Heat 
pump 1 

Heat 
pump 2 

Heat 
pump 3 

Electric storage 
heaters 

Max. power consumption [kWel] 3.0 5.0 4.4 12.0 

Coefficient of performance [-] 5.4 3.0 5.4 1.0 

Thermal storage capacity  [kWhth] 29.0 13.0 28.7 36.0 

Thermal storage efficiency  [%] 95.0 95.0 95.0 100.0 

Annual heating demand [MWh] 26 43 50 21 

 

The description of the economic parameters for the electric heating systems is straightforward: 

Operating cost are defined by hourly and/or quarter hourly spot market prices for electricity 

consumption according to the dispatch schedules. However, it is important to mention that 

those prices just reflect procurement cost from a supplier´s perspective. Final operating cost that 

are billed on the customers´ (households) electricity invoice are significantly higher because 

margins and risk premiums as well as additional regulated price components such as taxes, 

grid-charges and other levies are included. 

 

4.3 Battery storage system 

In addition to the above-mentioned heating systems, a small grid-connected lithium-ion battery 

storage system is part of the portfolio. It is a stand-alone configuration which means that neither 

power generation units like PV installations nor consumers are connected directly to the storage 

system. Consequently, its full capacity can be used to generate profits from exploiting 

intertemporal spot market price differences. To reduce model complexity and computation 

time, we ignore calendric as well as cyclic battery ageing and therefore the battery´s usable 

capacity is assumed to remain constant. Furthermore, self-discharge is neglected and efficiency 

rates are considered to be independent from the state of charge and from the operating power 

during charging or discharging. Table 6 summarizes the specific configuration data of the 

battery storage system: 

Table 6: Key technical parameters of the battery storage systems 

Technical parameter  Battery storage system 

Usable storage capacity [kWhel] 32.5 

Max. charging and discharging power [kWel] 50 

Charging and discharging efficiencies [%] 92.5 
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5 Results and Discussion 

In this section, the results of the backtesting of our sequence of stochastic programs are 

discussed. These are based on the methodology described in Section 3 and the portfolio 

described in Section 4. Besides an analysis based on the original real-world portfolio, we carry 

out sensitivity analyses with two adjusted portfolio setups to identify the influence of available 

flexibilities if added to or removed from the given setting. 

The following parameters are not altered within the following subsections: 

In the k-means algorithm used for scenario reduction of the price path simulations (cf. Section 

3.3), k=15 and k=60 are chosen to obtain stochastic representations of the optimization 

problem. The number of scenarios is increased by two extreme price scenarios (one high, one 

low) each, leading to 17 or 62 scenarios, respectively, entering the optimization problem. The 

probability of these extreme scenarios is manually set to 0.001 (0.1%) each and all other 

reduced scenario probabilities are adjusted proportionally, assuring that the sum of 

probabilities over all scenarios still amounts to 1. 

For the parameterization of the bidding curves mentioned in Section 3.4, further assumptions 

need to be taken. Firstly, -3,000 €/MWh and 3,000 €/MWh are chosen as the left boundary of 

the lowest interval and the right boundary of the highest interval, respectively, for both DA and 

ID opening auctions. Secondly, the chosen number of intervals per bidding curve is 12. 

It is also noteworthy to mention that results as shown below compare the portfolio´s 

contribution margins between the different optimization approaches. To determine these 

margins, revenues from heat production are added to the respective objective values21. The 

revenues are derived from the opportunity costs of alternative supplies for the heat demands. 

These are calculated based on the prices for supply from the district heating grid (CHP unit No. 

1) and from gas boilers (CHP units No. 2 and No. 3). 

The optimization model used for solving all optimization problems, and the daily looping 

structure for the backtesting described in Section 3.5, are implemented in GAMS and solved by 

use of the Branch-and-Cut algorithm executed with Cplex solver version 12.622 in standard 

settings. 

 

 
21 The objective values in all cases are distinctly negative, mainly because said gains from heat 
production are not considered within the optimization model, but heat demand stills needs to be 
satisfied. These revenues only depend on heat demands and heat prices; both cannot be influenced by 
our short-term marketing decisions and are thus not relevant for the optimization. 
22 The backtesting code was executed on a virtual machine with a 2,6 GHz processor and eight cores. 
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5.1 Results for the real-world portfolio  

For our portfolio described in Section 4, the benefits of stochastic optimization are shown along 

with the implications of imperfect information and limited planning horizons in Figure 10. 

Applying rolling optimization horizon with perfect information reduces the annual contribution 

margin by 3,094 € compared to the integral optimization with perfect information. In the 

examined case, our results indicate that imperfect information induces rather limited additional 

losses relative to the overall contribution margins, the 𝐸𝑉𝑃𝐼𝑅𝐻 is 1,746 €. If uncertain prices are 

modelled stochastically, this foregone value of the expected value problem can be reduced 

substantially in relative terms. However, the benefits of stochastic optimization are limited in 

absolute numbers. The 𝐵𝑆𝑂17
𝑅𝐻 for the 17 scenario case amounts to 644 €, or 36.9% of the 

𝐸𝑉𝑃𝐼𝑅𝐻, in the deterministic case. With 62 scenarios, the 𝐵𝑆𝑂62
𝑅𝐻 increases by further 193 € to 

837 €, or 47.9% of the 𝐸𝑉𝑃𝐼𝑅𝐻, in the deterministic case. 

 

 

Figure 10: Overview of value added by stochastic optimization 

A closer look at the schedules of the electricity producing CHP plants, which mostly drive 

overall portfolio results, reveals that a problem representation with a higher number of 

scenarios leads to an adjustment in full-load hours towards the 𝑃𝐼𝑅𝐻 solution, see Table 7. A 

higher number of scenarios thus leads to bidding curves coping better with price uncertainty. 

Notably the cost-optimal heat supply technology for the different heating grids and the 

corresponding production schedules are identified more accurately. Yet the CHP units under 

consideration in our case study were designed to achieve high full-load hours, providing heat 

more or less in base-load operation. Therefore the potentials for an adjustment to variable and 

uncertain prices remain limited. The CHP unit No. 3, which is remunerated under the 
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renewable energy support scheme, has the highest full-load hours and would operate even 

more often, if the plant electricity output was not restrained by heat demand. Besides high heat 

demand, also low fuel costs favour CHP systems compared to pure heating technologies like 

back-up heat boilers (cf. Table 4) contributing also to this high number of full-load hours. The 

results for CHP plants No. 2 and 3 show that an improved consideration of price uncertainty 

leads to a higher share of heat demand covered by CHP, which in turn implies higher full-load 

hours for CHP No. 2 and No. 3. For CHP No. 1, where the potentials to shift heat production 

intertemporally are more pronounced due to a larger heat storage, the effect on full-load hours 

is more ambiguous. But throughout the absolute difference between full-load hours in the 𝑆𝑂𝑛 

and 𝑃𝐼𝑅𝐻 cases decreases, the more price uncertainty is captured by an increasing number of 

scenarios 𝑛. Interestingly, the full-load hours are lower in the case with perfect information 

without a rolling horizon (𝑃𝐼), than with a rolling horizon (𝑃𝐼𝑅𝐻), as storages in the system are 

now able to shift heat and electricity generation between different days, enabling CHP units to 

operate in hours with higher electricity prices. 

Table 7: Full-load hours of the CHP units in the portfolio with and without perfect information 

CHP Unit 𝑷𝑰 𝑷𝑰𝑹𝑯 𝑬𝑽𝑹𝑯 𝑺𝑶𝟏𝟕 𝑺𝑶𝟔𝟐 

No. 1  4,781 5,158 4,815 5,172 5,149 

No. 2 7,371 7,691 7,472 7,573 7,585 

No. 3 8,250 8,311 8,275 8,277 8,284 

Note: the capacity factor of the units may be obtained by dividing the number of full load hours by 8760 h 

 

While this implies a financial improvement through the use of stochastic optimization, the 

computational cost, however, are increasing disproportionally, as shown in Table 8.23 On 

average, 17 scenarios still enable a single solve within minutes, a backtesting procedure for a 

one year period terminates within a few days. With 62 scenarios, single computation times 

exceed the relevant up-front optimization times in actual market environments, i.e. an 

optimization run between DA and IDO auctions will often take longer than the actual bid 

preparation time (latest announcement time of DA results, 1:50 p.m., closing time of IDO 

auction 3:00 p.m.). Backtesting times also become poorly manageable, making it hard to assess 

the quality of the given uncertainty modelling approach within a reasonable time. 

 
23 The calculations were run on two different (remote) virtual machine servers with the same basic 
features (2.6 GHz, 8 core processor, 24 GB RAM). The problems were solved in GAMS by CPLEX solver 
version 12.6.1.0 in default settings (i.e. duality gap =1%). The single perfect information optimization 
without rolling horizon is not listed in this table. This full-year optimization took 41 minutes and 4 
seconds. 
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Table 8: Runtimes of 1,095 subsequent optimizations with different scenario numbers (times in 
d:hh:mm:ss) 

Number of 
scenarios 𝒏 

Average time per 
optimization 

Average time per day  
(3 optimizations) 

Total time (1,095 
optimizations) 

1 (𝑃𝐼𝑅𝐻) 0:00:00:03 0:00:00:08 0:00:49:37 

1 (𝐸𝑉𝑅𝐻) 0:00:00:03 0:00:00:08 0:00:50:12 
17 0:00:02:45 0:00:08:15 2:02:09:00 
62 0:01:47:12 0:05:21:36 81:12:25:54 

   

Therefore, the increases in profit and computation time are obviously not well-balanced. The 

mismatch in our example may be summarized as follows: An improvement in recovered 

𝐸𝑉𝑃𝐼𝑅𝐻 by 11 percentage points (for 62 scenarios, compared to the deterministic case) was 

paid for with a fortyfold increase of computation time. 

5.2 Sensitivity analyses 

To further assess the robustness of the obtained results, several assumptions were modified to 

assess their impact on 𝐸𝑉𝑃𝐼𝑅𝐻, 𝐵𝑆𝑂𝑛
𝑅𝐻, unit operation and on the computational burden.  

First, the effect of removing flexibility from the system was assessed. The simplest flexibility 

option that could be removed without provoking an 𝐸𝑉𝑃𝐼𝑅𝐻 of close to zero due to binding 

heating constraints is the battery storage system described in Subsection 4.3. As a result, the 

contribution margins of the 𝑃𝐼𝑅𝐻 solution drops by 631 € - this effect is much more 

pronounced in integral planning (minus 1,500 €). Without this source of flexibility, both the 

𝐸𝑉𝑃𝐼𝑅𝐻 and the 𝐵𝑆𝑂𝑛
𝑅𝐻 also drop, as can be seen in Figure 11. Expressed in relative numbers, 

however, the 𝐵𝑆𝑂𝑛
𝑅𝐻 only decreases slightly, to 35.6% and 43.7%, as opposed to 36.9% and 

47.9% in the initial setting. 
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Figure 11: Sensitivity analysis of value added by stochastic optimization without battery storage 

As a lack of flexibility from electric storage induces less flexibility in trading decisions and thus 

a higher importance of individual unit-commitment decisions, computation times for multi-

scenario cases go up significantly, as listed in Table 9. 

Table 9: Runtimes for the sensitivity analysis without battery storage (times in d:hh:mm:ss) 

Number of 
scenarios 𝒏 

Average time per 
optimization 

Average time per day  
(3 optimizations) 

Total time (1,095 
optimizations) 

1 (𝑃𝐼𝑅𝐻) 0:00:00:03 0:00:00:08 0:00:47:15 

1 (𝐸𝑉𝑅𝐻) 0:00:00:02 0:00:00:06 0:00:38:59 
17 0:00:03:49 0:00:11:28 2:21:44:12 
62 0:03:20:49 0:10:02:27 152:16:55:42 

  

As a second sensitivity, the impact of a higher flexibility potential is investigated. Therefore, the 

heat demand for the various heating grids is scaled down so that the CHP units would reach 

4,380 heat full-load hours in the investigated year, if no alternative heat source was used. This 

increases the leeway for shifting heat production between hours of the day by means of the 

installed heat storages. The absolute annual heat demands and their relative changes compared 

to the original case are displayed in Table 10. 

Table 10: Sensitivity analysis with reduced annual heat demands 

  CHP No. 1 CHP No. 2 CHP No. 3 

Annual Heat Demand [MWh] 2,394 356 148 

Change [%] -31.9% -71.1% -77.2% 
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The absolute value of the overall contribution margins decreases significantly given the reduced 

need for heat generation. In contrast, the gap between the margins with perfect foresight with 

and without rolling horizon slightly increases, as more heat production can be shifted between 

subsequent days, if there is no limited optimization time horizon. The results indicate a minor 

effect on 𝐵𝑆𝑂𝑛
𝑅𝐻 and 𝐸𝑉𝑃𝐼𝑅𝐻, respectively. Although the absolute value of the contribution 

margins has decreased, the effects of perfect information and stochastic modelling of uncertain 

prices remain on a similar absolute level, as can be seen in Figure 12. While it is arguable 

whether the 𝐸𝑉𝑃𝐼𝑅𝐻 and 𝐵𝑆𝑂𝑛
𝑅𝐻 are thus higher in relative terms regarding the overall portfolio 

margins, the 𝐵𝑆𝑂𝑛
𝑅𝐻 relative to the 𝐸𝑉𝑃𝐼𝑅𝐻 shows a decrease from 36.9% and 47.9% to 28.6% 

and 32.3%. 

 

 

Figure 12: Sensitivity analysis of value added by stochastic optimization with reduced overall heat 
demand. 

While the effects on 𝐸𝑉𝑃𝐼𝑅𝐻 and 𝐵𝑆𝑂𝑛
𝑅𝐻 seem ambiguous, the effects on full-load-hours and 

computation time are evident. Table 11 shows a clear decline in full-load-hours by the reduced 

heat demand, as intended in this sensitivity analysis. As before, a higher number of scenarios 

induces a converging behaviour of full-load hours towards the 𝑃𝐼𝑅𝐻 solution. As before, the 

full-load-hours slightly decrease, when there is no limited optimization time-horizon, indicating 

more efficient heat storage usage between subsequent days. 

Table 11: Full-load hours of CHP units for sensitivity analysis with reduced annual heat demands 
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CHP Unit 𝑷𝑰 𝑷𝑰𝑹𝑯 𝑬𝑽𝑹𝑯 𝑺𝑶𝟏𝟕 𝑺𝑶𝟔𝟐 

No.1  4,042 4,131 3,901 4,084 4,078 

No. 2 4,338 4,344 4,328 4,329 4,322 

No. 3 6,400 6,613 6,520 6,596 6,550 

 

Computation times, however, rise significantly by this addition of leeway, as can be seen in 

Table 12. For 17 scenarios, calculation times on average quadruple, as less dispatch decisions 

are determined by high heat demand periods. Therefore, the optimization model needs more 

time to decide on the binary variable values determining the operation state of the CHP units.24 

Table 12: Runtimes for the sensitivity analysis with reduced annual heat demands (times in d:hh:mm:ss) 

Number of 
scenarios 𝒏 

Average time per 
optimization 

Average time per day 
(3 optimizations) 

Total time (1,095 
optimizations) 

1 (𝑃𝐼𝑅𝐻) 0:00:00:03 0:00:00:08 0:00:50:48 

1 (𝐸𝑉𝑅𝐻) 0:00:00:03 0:00:00:08 0:00:50:48 
17 0:00:12:44 0:00:38:11 9:16:14:50 
62 0:04:49:51 0:14:29:34 220:09:53:25 

 

6 Conclusion 

In this paper, we investigate the benefits of stochastic programming in the context of the 

operation of heat supply technologies in small-scale district heating grids with the example of a 

real-world portfolio. We model the uncertainty of quarter-hourly electricity prices based on an 

approach by Pape, et al. (2017), originally designed for hourly products. Uncertainty in heat 

demand is not considered. Price scenario paths are created using Monte Carlo Simulation. 

These paths are subsequently reduced by applying a k-means algorithm. Furthermore, we 

consider bidding curve characteristics as specified notably by the European EPEXSPOT market, 

directly in our multistage portfolio optimization model, making use of a novel approach to 

choose the bidding curve’s supporting points. The model formulation furthermore implements 

different cogeneration, heat conversion, and storage technologies. 

We furthermore suggest a concept for the evaluation of benefits from stochastic optimization in 

rolling-horizon applications, i.e. the expected value of perfect information with a rolling 

horizon (𝐸𝑉𝑃𝐼𝑅𝐻) and the benefit of stochastic solution with a rolling horizon and 𝑛 scenarios 

(𝐵𝑆𝑂𝑛
𝑅𝐻). 

 
24 This increasing computational burden is significantly less pronounced in the full-year optimization 
with perfect foresight, as the duration increases to 40 minutes and 23 seconds, thus by only 19 seconds 
compared to our initial setting. 
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We find that under the given assumptions and modelling choices, stochastic optimization 

improves the contribution margins of the modelled portfolio. It is possible to recover a 

significant share (>35%) of the 𝐸𝑉𝑃𝐼𝑅𝐻 that would be lost in a deterministic recourse 

representation of the problem. Computation time, however, is rising disproportionally, 

negatively impacting the attractiveness of implementation of high scenario representations. In 

the given setting, the overall absolute 𝐵𝑆𝑂𝑛
𝑅𝐻 is limited compared to the overall contribution 

margins. By removing or adding inter-temporal flexibilities through storages on both the electric 

and the heat side of the portfolio, these results do not change significantly. 

The research conducted in this paper confirms the repeatedly described benefits of stochastic 

modelling of uncertainty. However, we show that the performance of stochastic optimization 

approaches depends highly on technical characteristics of the units involved and, even more, 

on the rigidity induced by equality constraints such as heat demand constraints. As the CHP 

units under study have a fixed power-to-heat ratio and short-term optimal dispatch of storage 

systems is not necessarily influenced by more accurate price predictions, stochastic 

optimization faces limitations. 

Finally, we find that stochastic optimization in this setting suffers heavily from the curse of 

dimensionality, if scenario numbers are increased. A high number of equality restrictions and 

binary unit-commitment variables strongly increase the computational burden, limiting the 

applicability in real-world contexts with high scenario numbers. However, also smaller 

numbers of scenarios prove to provide useful decision support for real world applications.    
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Appendix 1: Portfolio Optimization Model 

This section contains the full description of the portfolio optimization model introduced in 

Section 3.4. The implementation of this MILP model in GAMS consists of an objective function 

and about 50 further types of equality and inequality constraints. For the sake of simplicity, 

some constraints are hereby displayed jointly that are represented by more than one constraint 

in the actually implemented model. 

Appendix 1.1: Nomenclature 

The tables below list all relevant indices, sets, variables and parameters as used in the model 

description. 

Table 13: Nomenclature for indices 

Indices  Description 

𝑛 scenario node 

ℎ hour 

𝑡 quarter hour 

𝑢 power/heat unit 

ℎ𝑠 heating system 

𝑖 intervals for quarter-hourly bidding curve 

𝑖ℎ intervals for hourly bidding curve 

𝑑𝑒𝑡 deterministic 

 

Table 14: Nomenclature for sets 

Index sets Description 

𝑁 Set of all scenarios 𝑛 

𝑈 Set of all power or heat producing units 𝑢 

𝑈𝑏𝑜𝑖𝑙𝑒𝑟 ∈ 𝑈 Set of all heat boilers, subset of 𝑈 

𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒  ∈ 𝑈 Set of all heat storages, subset of 𝑈 

𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒  ∈ 𝑈 Set of all battery storages, subset of 𝑈 

𝑈𝑐ℎ𝑝  ∈ 𝑈 Set of all combined heat and power units, subset of 𝑈 

𝑈ℎ𝑒𝑎𝑡𝑝𝑢𝑚𝑝  ∈ 𝑈 Set of all heat pump units, subset of 𝑈 

𝑁𝐻 Set of consistent hour/scenario combinations (𝑛, ℎ) 

𝑁𝑇 Set of consistent quarter-hour/scenario combinations (𝑛, 𝑡) 

𝐻𝑇 Set of consistent quarter-hour/hour mappings (ℎ, 𝑡) 

𝐻𝑆 Set of all heating systems ℎ𝑠 



 

VII 

𝑇𝐼 Mapping of quarter-hourly price simulations 𝑃𝑛,𝑡
𝐼𝐷 to intervals for 

quarter-hourly bidding curve 𝑖 for each scenario 𝑛 

𝐻𝐼𝐻 Mapping of hourly price simulations 𝑃𝑛,ℎ
𝐷𝐴 to intervals for hourly 

bidding curve 𝑖ℎ for each scenario 𝑛 

𝑇𝑑𝑒𝑡 Quarter-hourly time-steps 𝑡 belonging to the deterministic time-
horizon of the stochastic optimization 

𝐻𝑑𝑒𝑡 Hourly time-steps ℎ belonging to the deterministic time-horizon of the 
stochastic optimization 

 

Table 15: Nomenclature for variables 

Variables Unit Range Description 

𝑝𝑛,ℎ
𝐷𝐴 kWel ℝ Net marketed power in DA Auction per hour ℎ in scenario 𝑛 

𝑝𝑛,𝑡
𝐼𝐷  kWel ℝ Net marketed power in ID Auction per quarter hour 𝑡  

in scenario 𝑛 

𝑝𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟 kWel ℝ0

+ Produced power by unit 𝑢 in quarter hour 𝑡 in scenario 𝑛 

𝑞𝑛,𝑢,𝑡
𝐹𝑢𝑒𝑙 kWth ℝ0

+ Used fuel by unit 𝑢 in quarter hour 𝑡 in scenario 𝑛 

𝑞𝑛,𝑡
𝐷𝐻𝑒𝑎𝑡 kWth ℝ0

+ 
District heat obtained from the district heating grid  
in quarter hour 𝑡 in scenario 𝑛 

𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 kWth ℝ 

Produced heat by unit 𝑢 in quarter hour 𝑡 in scenario 𝑛  
(may be negative for charging heat storages) 

𝑣𝑜𝑙𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 kWhth ℝ0

+ 
Heat storage filling level by unit 𝑢 in quarter hour 𝑡  
in scenario 𝑛 

𝑝𝑛,𝑢,𝑡
𝐶ℎ𝑎𝑟𝑔𝑒 kWel ℝ0

+ 
Power charged to battery storage 𝑢 in quarter hour 𝑡  
in scenario 𝑛 

𝑝𝑛,𝑢,𝑡
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 kWel ℝ0

+ 
Power discharged from battery storage 𝑢 in quarter hour 𝑡  
in scenario 𝑛 

𝑣𝑜𝑙𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟 kWhel ℝ0

+ 
Battery storage filling level by unit 𝑢 in quarter hour 𝑡  
in scenario 𝑛 

𝑝𝑛,𝑢,𝑡
𝐶𝑜𝑛𝑠 kWel ℝ0

+ 
Electricity consumption by heat pump 𝑢 in quarter hour 𝑡  
in scenario 𝑛 

𝑜𝑛,𝑢,𝑡 - {0; 1} 
Binary power plant operation variable (1: on, 0: off) for unit 𝑢 in 
quarter hour 𝑡 in scenario 𝑛 

𝑢𝑝𝑛,𝑢,𝑡 - {0; 1} 
Binary power plant operation variable (1: plant starting,  
0: plant not starting) for unit 𝑢 in quarter hour 𝑡 in scenario 𝑛 

𝑝𝑡,𝑖
𝐼𝐷,𝑙𝑏 kWel ℝ 

Power amount bid at the left boundary of the quarter hourly 
price interval 𝑖 for quarter hour 𝑡 

𝑝𝑡,𝑖
𝐼𝐷,𝑟𝑏 kWel ℝ 

Power amount bid at the right boundary of the quarter hourly 
price interval 𝑖 for quarter hour 𝑡 

𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑙𝑏ℎ kWel ℝ 

Power amount bid at the left boundary of the hourly price 
interval 𝑖ℎ for hour ℎ 



 
 

VIII 

𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑟𝑏ℎ kWel ℝ 

Power amount bid at the right boundary of the hourly price 
interval 𝑖ℎ for hour ℎ 

 

Table 16: Nomenclature for parameters 

Parameters Unit Range Description 

𝜑𝑛 - [0,1] Scenario probability of scenario 𝑛 

𝑃𝑛,ℎ
𝐷𝐴 €/kWel ℝ DA Auction Price of hour ℎ in scenario 𝑛 

𝑃𝑛,𝑡
𝐼𝐷 €/kWel ℝ ID Auction Price of quarter-hour 𝑡 in scenario 𝑛 

𝑇𝑢
𝐶𝑜𝑚𝑝 €/kWel ℝ0

+ EEG compensation payment for produced power of 
unit 𝑢 

𝐶𝑛,𝑢,𝑡
𝐹𝑢𝑒𝑙 €/kWth ℝ0

+ Fuel costs (incl. CO2) for unit 𝑢 in quarter-hour 𝑡 in 
scenario 𝑛 

𝐶𝑛,𝑡
𝐷𝐻𝑒𝑎𝑡 €/kWth ℝ0

+ District heat price in quarter-hour 𝑡 in scenario 𝑛 

∆ℎ h  Duration of one hour (1h) 

∆𝑡 h  Duration of one quarter-hour (1/4 h) 

𝐷𝑡
𝑃𝑜𝑤𝑒𝑟 kWel ℝ0

+ 
Power demand position in quarter -hour 𝑡 (from 
previous marketing in hourly and quarter hourly 
markets) 

𝐷𝑡
𝐻𝑒𝑎𝑡 kWth ℝ0

+ Local heat demand in quarter hour 𝑡 

𝑄𝑢
𝐻𝑒𝑎𝑡,𝑚𝑎𝑥 kWth ℝ0

+ Maximum heat production capacity of unit 𝑢 

𝜂𝑢 - [0,1] Boiler efficiency of unit 𝑢 

𝑄𝑢
𝐻𝑒𝑎𝑡,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥 kWth ℝ0

+ Maximum heat storage discharge capacity of unit 𝑢 

𝑄𝑢
𝐻𝑒𝑎𝑡,𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥 kWth ℝ0

+ Maximum heat storage charge capacity of unit 𝑢 

𝑉𝑢
𝐻𝑒𝑎𝑡,𝑚𝑎𝑥 kWhth ℝ0

+ Maximum heat storage filling level of unit 𝑢 

𝑉𝑢
𝐻𝑒𝑎𝑡,𝑆𝑡𝑎𝑟𝑡 kWhth ℝ0

+ Heat storage filling start level of unit 𝑢 

𝑉𝑢
𝐻𝑒𝑎𝑡,𝐸𝑛𝑑 kWhth ℝ0

+ Heat storage filling end level of unit 𝑢 

𝜂𝑢
𝐿𝑜𝑠𝑠𝑒𝑠 - [0,1] Heat storage efficiency of unit 𝑢 

𝑃𝑢
𝑃𝑜𝑤𝑒𝑟,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥 kWel ℝ0

+ Maximum battery storage discharge capacity  
of unit 𝑢 

𝑃𝑢
𝑃𝑜𝑤𝑒𝑟,𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥 kWel ℝ0

+ Maximum battery storage charge capacity of unit 𝑢 

𝑉𝑢
𝑃𝑜𝑤𝑒𝑟,𝑚𝑎𝑥 kWhel ℝ0

+ Maximum battery storage filling level of unit 𝑢 

𝑉𝑢
𝑃𝑜𝑤𝑒𝑟,𝑆𝑡𝑎𝑟𝑡 kWhel ℝ0

+ Battery storage filling start level of unit 𝑢 

𝑉𝑢
𝑃𝑜𝑤𝑒𝑟,𝐸𝑛𝑑 kWhel ℝ0

+ Battery storage filling end level of unit 𝑢 

𝜂𝑢
𝐶ℎ𝑎𝑟𝑔𝑒 - [0,1] Battery storage charging efficiency of unit 𝑢 

𝜂𝑢
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 - [0,1] Battery storage discharging efficiency of unit 𝑢 

𝑃𝑢
𝑀𝑎𝑥 kWel ℝ0

+ Maximum power plant production limit of unit 𝑢 

𝑃𝑢
𝑀𝑖𝑛 kWel ℝ0

+ Minimum stable power plant production limit  
(if power plant is running) of unit 𝑢 



 

IX 

𝑃𝑢
𝐶𝑜𝑛𝑠,𝑀𝑖𝑛 kWel ℝ0

+ Minimum heat pump electricity consumption 
of unit 𝑢 

𝑃𝑢
𝐶𝑜𝑛𝑠,𝑀𝑎𝑥 kWel ℝ0

+ Maximum heat pump electricity consumption  
of unit 𝑢 

𝐶𝑂𝑃𝑢 kWth /kWel [0,1] Heat pump Coefficient of Performance of unit 𝑢 

𝑏𝑢
𝑏𝑝 kWth /kWel ℝ0

+ Slope of the backpressure curve (pq-diagram)  
of unit 𝑢 

𝑎𝑢
𝑏𝑝 kWth ℝ Section of the backpressure curve (pq-diagram)  

of unit 𝑢 

𝑏𝑢
𝐹𝑢𝑒𝑙 kWth /kWel ℝ0

+ Slope of the fuel consumption curve of unit 𝑢 

𝑎𝑢
𝐹𝑢𝑒𝑙 kWth ℝ0

+ Minimal fuel consumption, section of the fuel 
consumption curve of unit 𝑢 

𝑂𝑃𝑢 - ℝ0
+ Minimum operation period number of plant 𝑢 

𝑆𝐷𝑢 - ℝ0
+ Minimum shut-down period number of plant 𝑢 

𝜆𝑛,𝑡 
- [0,1] 

Linearization parameter for the position of quarter-
hourly spot prices within the quarter-hourly bidding 
curve in quarter-hour 𝑡 in scenario 𝑛 

𝜆𝑛,ℎ 
- [0,1] 

Linearization parameter for the position of hourly 
spot prices within the hourly bidding curve in hour 
ℎ in scenario 𝑛 

 

Appendix 1.2: Model formulation 

The objective function includes the revenues obtained in the spot markets, further revenue 

streams through Renewable infeed premia and the costs associated with power and heat 

generation: 

max
𝑝𝑛,ℎ

𝐷𝐴,𝑝𝑛,𝑡
𝐼𝐷 ,𝑞𝑛,𝑢,𝑡

𝑃𝑜𝑤𝑒𝑟,𝑞𝑛,𝑢,𝑡
𝐹𝑢𝑒𝑙,𝑞𝑛,𝑡

𝐻𝑒𝑎𝑡
∑ 𝜑𝑛

𝑛∈𝑁

⋅ ( ∑ 𝑝𝑛,ℎ
𝐷𝐴 ⋅ 𝑃𝑛,ℎ

𝐷𝐴 ⋅ Δℎ

ℎ|(𝑛,ℎ)∈𝑁𝐻

+ ( ∑ (𝑝𝑛,𝑡
𝐼𝐷 ⋅ 𝑃𝑛,𝑡

𝐼𝐷 − 𝑞𝑛,𝑡
𝐷𝐻𝑒𝑎𝑡 ⋅ 𝐶𝑛,𝑡

𝐷𝐻𝑒𝑎𝑡

𝑡|(𝑛,𝑡)∈𝑁𝑇

+ ∑ 𝑝𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟 ⋅ 𝑇𝑢

𝐶𝑜𝑚𝑝
− 𝑞𝑛,𝑢,𝑡

𝐹𝑢𝑒𝑙 ⋅ 𝐶𝑛,𝑢,𝑡
𝐹𝑢𝑒𝑙

𝑢∈𝑈

)) ⋅ Δ𝑡) 

(3) 

   

There are both electric and heat balance equations implemented in the model. The electric 

balance equation balances the trading position and the physical fulfilment of said position: 



 
 

X 

∀ (𝑛, ℎ) ∈ 𝑁𝐻 ∧  ∀ (𝑛, 𝑡) ∈  𝑁𝑇 ∧ ∀ (ℎ, 𝑡)  ∈  𝐻𝑇:  

∑ 𝑞𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟

𝑢∈𝑈

= 𝐷𝑡
𝑃𝑜𝑤𝑒𝑟 + 𝐷ℎ

𝑃𝑜𝑤𝑒𝑟 + 𝑝𝑛,𝑡
𝐼𝐷 + 𝑝𝑛,ℎ

𝐷𝐴   
(4) 

 

For six out of seven local heating systems, the following balance equation holds: 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇 ∧ ∀ ℎ𝑠 ∈ 𝐻𝑆: ∑ 𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 + 𝑞𝑛,𝑡

𝐷𝐻𝑒𝑎𝑡 =  𝐷𝑡
𝐻𝑒𝑎𝑡

(𝑢)|(𝑢,ℎ𝑠)

 (5) 

 

Thereby the option to obtain heat 𝑞𝑛,𝑡
𝐷𝐻𝑒𝑎𝑡 from a district heating grid is only relevant for one 

considered heating system (system with CHP No. 1). For all other systems 𝑞𝑛,𝑡
𝐷𝐻𝑒𝑎𝑡 = 0. 

For heating boilers, the following constraints apply, describing the maximum production 

capacity (6) and the boiler efficiency (7): 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, 𝑢 ∈  𝑈𝑏𝑜𝑖𝑙𝑒𝑟 ∶  𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡  ≤  𝑄𝑢

𝐻𝑒𝑎𝑡,𝑚𝑎𝑥  (6) 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, 𝑢 ∈  𝑈𝑏𝑜𝑖𝑙𝑒𝑟: 𝑞𝑛,𝑢,𝑡
𝐹𝑢𝑒𝑙 =

𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡

𝜂𝑢
  

(7) 

 

The heat storages are subject to the following constraints, describing maximum storage level 

changes ((8), (9)), maximum storage level (10), and storage level changes between time-steps 

(11), as well as start (12) and end storage levels (13): 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈  𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒:  𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡  ≤  𝑄𝑢

𝐻𝑒𝑎𝑡,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥
  (8) 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈  𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒:  𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡  ≥  𝑄𝑢

𝐻𝑒𝑎𝑡,𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥
  (9) 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈  𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒:  𝑣𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡  ≤  𝑉𝑢

𝐻𝑒𝑎𝑡,𝑚𝑎𝑥 (10) 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈  𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒:  𝑣𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 =  𝑣𝑛,𝑢,𝑡−1

𝐻𝑒𝑎𝑡 ⋅ 𝜂𝑢
𝐿𝑜𝑠𝑠𝑒𝑠 − 𝑞𝑛,𝑢,𝑡

𝐻𝑒𝑎𝑡 ⋅ ∆𝑡 (11) 

∀ 𝑡 ∈ {1}, ∀ 𝑢 ∈  𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒:  𝑣𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 =  𝑉𝑢

𝐻𝑒𝑎𝑡,𝑆𝑡𝑎𝑟𝑡 ⋅ 𝜂𝑢
𝐿𝑜𝑠𝑠𝑒𝑠 − 𝑞𝑛,𝑢,𝑡

𝐻𝑒𝑎𝑡 ⋅ ∆𝑡 (12) 

∀ 𝑡 ∈ {240}, (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈  𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ∶  𝑣𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 =  𝑉𝑢

𝐻𝑒𝑎𝑡,𝐸𝑛𝑑 (13) 



 

XI 

   

Similarly, the battery storage is subject to the following constraints describing maximum storage 

level changes ((14), (15)), maximum storage level (16), and storage level changes between time-

steps (17), as well as start (18) and end storage levels (19): 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈ 𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒: 𝑝𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟  ≤  𝑃𝑢

𝑃𝑜𝑤𝑒𝑟,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥
  (14) 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈ 𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒: 𝑝𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟  ≥ − 𝑃𝑢

𝑃𝑜𝑤𝑒𝑟,𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥
  (15) 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈ 𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒: 𝑣𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟  ≤  𝑉𝑢

𝑃𝑜𝑤𝑒𝑟,𝑚𝑎𝑥 (16) 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈ 𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒: 𝑣𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟

=  𝑣𝑛,𝑢,𝑡−1
𝑃𝑜𝑤𝑒𝑟 + (𝑝𝑛,𝑢,𝑡

𝐶ℎ𝑎𝑟𝑔𝑒
⋅ 𝜂𝑢

𝐶ℎ𝑎𝑟𝑔𝑒
− 𝑝𝑛,𝑢,𝑡

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
⋅ 𝜂𝑢

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
) ⋅ ∆𝑡 

(17) 

∀ 𝑡 ∈ {1}, ∀ 𝑢 ∈ 𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒: 𝑣𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟

=  𝑉𝑢
𝑃𝑜𝑤𝑒𝑟,𝑆𝑡𝑎𝑟𝑡 + (𝑝𝑛,𝑢,𝑡

𝐶ℎ𝑎𝑟𝑔𝑒
⋅ 𝜂𝑢

𝐶ℎ𝑎𝑟𝑔𝑒
− 𝑝𝑛,𝑢,𝑡

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
⋅ 𝜂𝑢

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
) ⋅ ∆𝑡 

(18) 

∀ 𝑡 ∈ {240}, (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈ 𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒: 𝑣𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟 =  𝑉𝑢

𝑃𝑜𝑤𝑒𝑟,𝐸𝑛𝑑 (19) 

 

For all electric units also delivering heat 𝑈𝑐ℎ𝑝 ∈ 𝑈, the maximum heat constraint is given by: 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝:  𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 ≤ 𝑄𝑢

𝐻𝑒𝑎𝑡,𝑚𝑎𝑥 (20) 

 

The limits for electricity production are given by: 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝:  𝑝𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟 ≤ 𝑜𝑛,𝑢,𝑡 ⋅ 𝑃𝑢

𝑀𝑎𝑥 
(21) 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝:  𝑝𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟 ≥ 𝑜𝑛,𝑢,𝑡 ⋅ 𝑃𝑢

𝑀𝑖𝑛 (22) 

 



 
 

XII 

For all combined heat and power producing motor units 𝑢 ∈ 𝑈𝑐ℎ𝑝 in the system, the following 

equations hold to describe the relationship of produced electricity and produced heat (also 

often denoted as pq-diagram, (23)), as well as the CHP fuel consumption depending on 

electricity production (24): 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝:   𝑞𝑛,𝑐ℎ𝑝,𝑡
ℎ𝑒𝑎𝑡 =  𝑎𝑐ℎ𝑝

𝑏𝑝
⋅ 𝑜𝑛,𝑐ℎ𝑝,𝑡 + 𝑏𝑢

𝑏𝑝
⋅ 𝑝𝑛,𝑐ℎ𝑝,𝑡

𝑒𝑙𝑒𝑐  (23) 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝:   𝑞𝑛,𝑐ℎ𝑝,𝑡
𝐹𝑢𝑒𝑙 = 𝑎𝑐ℎ𝑝

𝐹𝑢𝑒𝑙 ⋅ 𝑜𝑛,𝑐ℎ𝑝,𝑡 + 𝑏𝑐ℎ𝑝
𝐹𝑢𝑒𝑙 ⋅ 𝑝𝑛,𝑐ℎ𝑝,𝑡

𝑒𝑙𝑒𝑐  (24) 

 

For the heat pump units 𝑢 ∈ 𝑈ℎ𝑒𝑎𝑡𝑝𝑢𝑚𝑝, the following restrictions hold to describe minimum 

(25) and maximum heat pump electricity consumption (26), as well as the electricity/heat 

conversion efficiency (27) and the consideration of electricity consumed in the overall 

electricity balance (28):  

∀ 𝑢 ∈ 𝑈ℎ𝑒𝑎𝑡𝑝𝑢𝑚𝑝:  𝑝𝑛,𝑢,𝑡
𝐶𝑜𝑛𝑠 ≥ 𝑜𝑛,𝑢,𝑡 ⋅ 𝑃𝑢

𝐶𝑜𝑛𝑠,𝑀𝑖𝑛 (25) 

∀ 𝑢 ∈ 𝑈ℎ𝑒𝑎𝑡𝑝𝑢𝑚𝑝: 𝑝𝑛,𝑢,𝑡
𝐶𝑜𝑛𝑠 ≤ 𝑜𝑛,𝑢,𝑡 ⋅ 𝑃𝑢

𝐶𝑜𝑛𝑠,𝑀𝑎𝑥 (26) 

∀ 𝑢 ∈ 𝑈ℎ𝑒𝑎𝑡𝑝𝑢𝑚𝑝: 𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 = 𝑝𝑛,𝑢,𝑡

𝐶𝑜𝑛𝑠 ⋅ 𝐶𝑂𝑃𝑢 
(27) 

∀ 𝑢 ∈ 𝑈ℎ𝑒𝑎𝑡𝑝𝑢𝑚𝑝: 𝑝𝑛,𝑢,𝑡
𝐶𝑜𝑛𝑠 = −𝑝𝑛,𝑢,𝑡

𝑃𝑜𝑤𝑒𝑟 (28) 

 

The minimum operation time and minimum shut down times of the CHP motors are modelled 

by use of further binary variables and by introducing further time-coupling constraints, which 

describe minimum operation time (29), minimum shut-down time (30) and the definition of a 

power plant start (31): 

∀ (𝑛, 𝑡) ∈  𝑁𝑇, (𝑛, 𝑡 − 1) ∈ 𝑁𝑇, 𝑢 ∈ 𝑈𝑐ℎ𝑝 ∶ ∑ 𝑢𝑝𝑛,𝑢,𝑡′

𝑡

𝑡′=𝑡−𝑂𝑃𝑢+1

≤ 𝑜𝑛,𝑢,𝑡 (29) 

∀ (𝑛, 𝑡) ∈  𝑁𝑇, (𝑛, 𝑡 − 1) ∈ 𝑁𝑇, 𝑢 ∈ 𝑈𝑐ℎ𝑝 ∶ ∑ 𝑢𝑝𝑛,𝑢,𝑡′

𝑡

𝑡′=𝑡−𝑆𝐷𝑢+1

≤ 1 − 𝑜𝑛,𝑢,𝑡−𝑆𝐷𝑢
 (30) 

∀ (𝑛, 𝑡) ∈  𝑁𝑇, (𝑛, 𝑡 − 1) ∈ 𝑁𝑇, 𝑢 ∈ 𝑈𝑐ℎ𝑝 ∶ 𝑢𝑝𝑛,𝑢,𝑡 ≥ 𝑜𝑛,𝑢,𝑡 − 𝑜𝑛,𝑢,𝑡−1 (31) 

 



 

XIII 

Spot trading according to EPEXSPOT market rules is realized by the following constraints: 

Forbidden marketing in the deterministic part of the optimization ((34), (37)), as well as 

minimum ((32), (35), (38)) and maximum ((33), (36), (39)) marketing amounts for each interval 

of the bidding curve for Day Ahead Auction ((32), (33), (34)), Intraday Opening Auction ((35), 

(36), (38)) and Combined marketing to both auctions ((38), (39)) are described by the following 

restrictions: 

∀ (𝑡, 𝑖) ∈  𝑇𝐼 ∶  𝑝𝑡,𝑖
𝐼𝐷,𝑙𝑏 ≥ − ∑ 𝑃𝑢

𝑃𝑜𝑤𝑒𝑟,𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥

𝑢 ∈𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒

− ∑ 𝑃𝑢
𝐶𝑜𝑛𝑠,𝑀𝑎𝑥

𝑢 ∈𝑈ℎ𝑒𝑎𝑡𝑝𝑢𝑚𝑝

 
(32) 

∀ (𝑡, 𝑖) ∈  𝑇𝐼 ∶  𝑝𝑡,𝑖
𝐼𝐷,𝑟𝑏 ≤ − ∑ 𝑃𝑢

𝑃𝑜𝑤𝑒𝑟,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥

𝑢 ∈𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒

+ ∑ 𝑃𝑢
𝑀𝑎𝑥

𝑢

 (33) 

∀ 𝑡 ∈  𝑇𝑑𝑒𝑡 ∶  𝑝𝑛,𝑡
𝐼𝐷 = 0 (34) 

∀ (ℎ, 𝑖ℎ) ∈ 𝐻𝐼𝐻 ∶  𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑙𝑏ℎ

≥ − ∑ 𝑃𝑢
𝑃𝑜𝑤𝑒𝑟,𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥

𝑢 ∈𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒

− ∑ 𝑃𝑢
𝐶𝑜𝑛𝑠,𝑀𝑎𝑥

𝑢 ∈𝑈ℎ𝑒𝑎𝑡𝑝𝑢𝑚𝑝

 

(35) 

∀ (𝐻, 𝑖ℎ) ∈  𝐻𝐼𝐻 ∶  𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑟𝑏ℎ ≤ − ∑ 𝑃𝑢

𝑃𝑜𝑤𝑒𝑟,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥

𝑢 ∈𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒

+ ∑ 𝑃𝑢
𝑀𝑎𝑥

𝑢

 (36) 

∀ ℎ ∈  𝐻𝑑𝑒𝑡 ∶  𝑝𝑛,ℎ
𝐷𝐴 = 0 (37) 

∀ (ℎ, 𝑖ℎ)  ∈ 𝐻𝐼𝐻 ∧ (ℎ, 𝑡)  ∈  𝐻𝑇 ∶  𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑙𝑏ℎ + 𝑝𝑡,𝑖

𝐼𝐷,𝑙𝑏

≥ − ∑ 𝑃𝑢
𝑃𝑜𝑤𝑒𝑟,𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥

𝑢 ∈𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒

− ∑ 𝑃𝑢
𝐶𝑜𝑛𝑠,𝑀𝑎𝑥

𝑢 ∈𝑈ℎ𝑒𝑎𝑡𝑝𝑢𝑚𝑝

 

(38) 

∀ (ℎ, 𝑖ℎ)  ∈ 𝐻𝐼𝐻 ∧ (ℎ, 𝑡)  ∈  𝐻𝑇 ∶  𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑟𝑏ℎ + 𝑝𝑡,𝑖

𝐼𝐷,𝑟𝑏

≤ − ∑ 𝑃𝑢
𝑃𝑜𝑤𝑒𝑟,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥

𝑢 ∈𝑈𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑠𝑡𝑜𝑟𝑎𝑔𝑒

+ ∑ 𝑃𝑢
𝑀𝑎𝑥

𝑢

 

(39) 

    

The following restrictions model the linearization of the optimized bidding curves within the 

bidding curve intervals and are defined for both the Day Ahead ((43),(44),(45)) and Intraday 

Opening Auction ((40),(41),(42)) bidding curves: 



 
 

XIV 

∀ (𝑡, 𝑖) ∈  𝑇𝐼 ∧   (𝑛, 𝑡) ∈  𝑁𝑇 ∶  𝑝𝑛,𝑡
𝐼𝐷 = (1 − 𝜆𝑛,𝑡) ⋅ 𝑝𝑡,𝑖

𝐼𝐷,𝑙𝑏 + 𝜆𝑛,𝑡 ⋅ 𝑝𝑡,𝑖
𝐼𝐷,𝑟𝑏 (40) 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇 ∶  𝑝𝑡,𝑖
𝐼𝐷,𝑙𝑏  ≤  𝑝𝑡,𝑖

𝐼𝐷,𝑟𝑏 (41) 

∀ (𝑡, 𝑖) ∈  𝑇𝐼, 𝑖 < 𝐼 ∶  𝑝𝑡,𝑖
𝐼𝐷,𝑟𝑏 =  𝑝𝑡,𝑖+1

𝐼𝐷,𝑙𝑏 (42) 

∀ (ℎ, 𝑖ℎ) ∈  𝐻𝐼𝐻 ∧  (𝑛, ℎ) ∈ 𝑁𝐻 ∶  𝑝𝑛,ℎ
𝐷𝐴 = (1 − 𝜆𝑛,ℎ) ⋅ 𝑝ℎ,𝑖ℎ

𝐷𝐴,𝑙𝑏ℎ + 𝜆𝑛,ℎ ⋅ 𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑟𝑏ℎ 

(43) 

∀ (𝑛, ℎ)  ∈  𝑁𝐻 ∶  𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑙𝑏ℎ  ≤  𝑝ℎ,𝑖ℎ

𝐷𝐴,𝑟𝑏ℎ (44) 

∀ (ℎ, 𝑖ℎ) ∈  𝐻𝐼𝐻, 𝑖ℎ < 𝐼𝐻 ∶  𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑟𝑏ℎ =  𝑝ℎ,𝑖ℎ+1

𝐷𝐴,𝑙𝑏ℎ (45) 

 

Finally, the condition avoiding arbitrage trades between hours and quarter-hours in the 1st 

Optimization is given by: 

∀ (𝑛, 𝑡)  ∈ 𝑁𝑇 ∶  ∑ 𝑝𝑛,𝑡
𝐼𝐷

(ℎ,𝑡)∈ 𝐻𝑇

 =  0 (46) 
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