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MULTI-DAY-AHEAD ELECTRICITY PRICE FORECASTING: A COMPARISON OF 

FUNDAMENTAL, ECONOMETRIC AND HYBRID MODELS+

by Philip Beran, Arne Vogler* and Christoph Weber 

Abstract 

Forecasting hourly electricity prices and their characteristic properties is a core challenge for 

energy generation companies and trading houses. The short-term marketing and purchase of 

electricity is usually managed with standardized products traded on different markets and with 

specific temporal resolution and maturity. The size and scope of the electricity price forecasting 

literature has grown significantly in recent years, with the majority of studies focused on short-

term (intraday and day-ahead) or long-term (investment decisions) periods. However, the 

literature for forecasting the period beyond the day-ahead horizon, which is relevant for trading 

the aforementioned products or for managing assets over several days, is rather scarce. Our paper 

fills this gap by developing individual forecasting models covering horizons from the day ahead 

up to a week ahead. We introduce hybrids of a parsimonious fundamental model and various 

popular econometric models. In a case study for the German day-ahead market in 2016 we test 

and compare the different model settings by carefully considering realistic available data and 

limiting the calculation time to fit typical trading time constraints. We find that the best models 

across the individual horizons and across all horizons jointly are hybrid model approaches. They 

combine the strengths of autoregressive models in terms of capturing daily - even non-linear - 

structures with the immediate reactions of fundamental models to short-term events or 

fundamental changes in the market. 
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1 Introduction 

The optimization, trading and subsequent operation of energy companies’ generation assets 

requires taking a view on future electricity prices. To adequately account for the technical 

restrictions of generation units and to serve the various electricity markets, the decision-making 

problems have to be considered over and beyond the day-ahead horizon. Consequently, 

electricity price forecasts have to be provided over multi-day-ahead horizons as well. 

Since the advent of the electricity price forecasting (EPF) literature, a plethora of forecasting 

approaches has been studied (cf. Weron (2014), Nowotarski and Weron (2018)). The prevailing 

approaches depend critically on the eventual application and thus the forecasting horizon as well 

as on data availability. Fundamental models, for example, have been primarily considered for 

medium- and long-term EPF. They aim to capture the underlying economic as well as physical 

relationships of electricity markets. In contrast, approaches based on econometric models 

dominate the short-term EPF literature and such models mainly characterize electricity prices as 

functions of previous prices and potentially additional exogenous variables. 

Short-term fundamental EPF models have recently started to be proposed in the literature. In 

addition, such models have also been considered in studies on performance-improving 

combinations with existing econometric approaches, lending so-called hybrid models. In contrast 

to the majority of the short-term EPF literature, which is primarily focused on forecasting over the 

day-ahead horizon, they have been applied to multi-day-ahead forecasting. Yet, no study has 

investigated the effect of the individual forecasting horizon on their predictive performance. Also, 

it has not been generally addressed in the literature whether EPF models for multi-day-ahead 

horizons should be considered in recursive or direct form. 

The present paper considers forecasts of German day-ahead electricity prices over multi-day-

ahead horizons using hybrids of a parsimonious fundamental model and various econometric 

models. It contributes to the scarce literature on short-term fundamental and hybrid EPF models 

and provides insights about the predictive ability of fundamental-econometric model 

combinations, the effect of the forecasting horizon on model performance and whether such 

models should generally be considered in recursive or direct form. In addition, it provides 

empirical evidence on the forecasting accuracy of popular EPF models over horizons beyond the 

standard day-ahead horizon. 

The remainder of the paper is structured as follows. Section 2 reviews the relevant literature and 

highlights the contributions of the present study. In Section 3, the different electricity price 

forecasting models are motivated and presented. In addition, the notion of recursive and direct 

forecasts is discussed and the considered evaluation framework is outlined. We provide an 
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overview of the considered dataset and discuss the broad results of the forecasting study in 

Section 4. Section 5 concludes. 

2 Material and methods 

2.1 Electricity price modelling and forecasting approaches 

The EPF literature generally distinguishes between three forecasting horizons: short, medium and 

long term. The thresholds between these horizons are not unambiguously defined. Weron and 

Ziel (2019) formulate a rule of thumb according to which the notion of short term is based upon 

the availability of reliable (precise) meteorological forecasts for temperature, wind speeds and 

cloud cover. This covers periods ranging from a few minutes to several days. After this, the 

medium term covers all horizons beyond reliable meteorological forecasts with horizons ranging 

from weeks to months to several years. Finally, long-term horizons include everything that 

follows, starting with a few years up to several decades. Since the data availability and the 

application of the forecasts vary with the forecasting horizon, different models have been 

developed and applied. The focus of the present study is on EPF for marketing and operation 

decisions on spot and reserve capacity markets. We thus consider short-term EPF with horizons 

of up to a week ahead, as our application study focuses on the German market where reserve 

capacity has been traded up to one week ahead until recently. 

Fundamental approaches are predominantly used in the medium and long term and are applied 

to the assessment of investment decisions or political measures. The price forecast is often just 

one of a number of results such as CO2 emission levels, developments in the power plant fleet or 

generation volumes. Many of these models are operated and developed in-house and are 

therefore not publicly available (e.g. Weron (2014)). Ringkjøb et al. (2018) provide an overview 

of published and partly freely accessible large-scale energy system models. 

Short-term fundamental EPF models are extremely rare. Reasons are the very high data 

requirements and extensive computing times. At the same time, although fundamental electricity 

market prices can represent average price levels (base prices over certain periods of time) well, 

they exhibit too low volatility and considerable difficulties in adequately representing extreme 

prices. Yet, especially these aspects are crucial for potential short-term applications in the energy 

industry. The few existing short-term fundamental EPF models constitute highly simplified or 

aggregated models. Beran et al. (2019) develop the simplified fundamental model ParFuM 

building on earlier work by Kallabis et al. (2016) and apply it to explain the price decline in the 

German day-ahead market in the years 2011 to 2015. For the price assessment, the authors solely 

use information that is publicly accessible at the time of the respective day-ahead gate closure. 

A similar approach is taken by Pape et al. (2016), who use the same model architecture to explain 
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price spreads between the German day-ahead and intraday markets. Marcos et al. (2019a) define 

a simple optimization model to determine the hourly day-ahead equilibrium prices for the Iberian 

market area for the year 2017. Although the model consists of a large number of equations and 

inputs, the computing time is reduced considerably by aggregating power plant classes and is 

therefore also suitable for usage in short-term markets. We contribute to this relatively scarce 

literature by presenting and validating a short-term fundamental EPF model for the German day-

ahead market. 

Econometric or statistical models are predominantly used for short-term EPF, as they are usually 

better suited to capture volatility and extreme price events. Weron (2014) already documents a 

substantial literature of statistical approaches, where electricity prices are typically characterized 

as functions of previous prices and additional exogenous variables. The predictive ability of such 

models depends mainly on the quality of the considered data, the incorporation of fundamental 

information and the efficiency of the employed algorithm. In recent years, the econometric EPF 

literature has grown even further with contributions addressing the comparison of multivariate 

and univariate model structures (e.g. Ziel and Weron (2018), Gianfreda et al. (2020)), the 

adoption of regularization techniques (e.g. Uniejewski and Weron (2018)) and the combination 

of forecasts across different calibration windows (e.g. Serafin et al. (2019)), to name but a few 

and without referring to the ever-increasing literature on probabilistic EPF. The state-of-the-art 

econometric model belongs to the class of so-called expert models and represents the electricity 

price as a function of autoregressive terms, non-linear terms, the price of the last hour of the 

preceding day and dummy variables that capture calendar information (e.g. Ziel and Weron 

(2018), Weron and Ziel (2019)). It is common to extend it with additional exogenous information 

such as predicted production of renewable energy sources (e.g. Gianfreda et al. (2020), 

Maciejowska et al. (2020)). Yet, not all econometric approaches model the electricity price 

directly. Ziel and Steinert (2016) propose a time series model extended by endogenous 

information for the bid volume in predefined price classes that underlie the supply and demand 

curves of the day-ahead market. Given forecasts for the bid volumes, they construct the resulting 

supply and demand curves, the intersection of which lends the predicted electricity price. In a 

follow-up paper, Ziel and Steinert (2018), they present one of the few econometric approaches 

to mid-term electricity price forecasting based on the preceding methodology. In a first stage, 

drivers of the physical market situation such as fossil or renewable generation are simulated with 

stochastic processes and these are translated into day-ahead expectations of fundamentals, 

supply and demand bid volumes and electricity price forecasts in a second stage. 

Given the plethora of approaches to EPF in the literature, investigations into potentially forecast-

performance-improving combinations have followed naturally. An approach can generally be 
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considered hybrid, if it constitutes a combination of two or more EPF techniques (cf. Weron 

(2014)). In the context of the present study, the terminology is used to describe an approach 

where the output of a fundamental EPF model constitutes an input to an econometric procedure. 

Here, the literature is as scarce as the literature on short-term fundamental EPF. Gonzalez et al. 

(2012) consider a hybrid model to forecast day-ahead baseload prices for Great Britain and report 

improved forecast accuracy in comparison to a number of purely econometric models. Bello et 

al. (2017) develop a hybrid forecasting approach for the medium term (several months). Their 

quantile regression for hourly Spanish electricity prices is based on a fundamental market 

equilibrium model that incorporates renewable feed-in, cross-border flows and load. They show 

that the forecasting accuracy for the tails of the electricity price distribution can be significantly 

increased. More recently, Marcos et al. (2019a) and Marcos et al. (2019b) study hourly day-ahead 

price forecasts from a hybrid model for the Iberian market. In both studies the fundamental model 

constitutes the aforementioned cost-production optimization model. Marcos et al. (2019a) 

include the fundamental market clearing price as an additional feature in a neural network, 

whereas Marcos et al. (2019b) consider the fundamental market clearing price and technology-

specific generation levels as inputs in a neural network, the forecast of which is then combined 

with the forecast of a neural network that is not based on any output from the fundamental model. 

These works are thus closely related to our proposed hybrid approach for German day-ahead 

prices based on a parsimonious approximation of the bid stack. 

The majority of contemporaneous studies on short-term EPF has considered the day-ahead 

forecasting horizon. Thus, very little work has been done on assessing models for forecasting 

hourly day-ahead prices over longer forecasting horizons, although the notion of longer horizons 

is not new to the EPF literature. Early studies have focused on predicting daily average electricity 

prices over horizons of variable length (e.g. Maciejowska and Weron (2013), Maciejowska and 

Weron (2015)). Muniain and Ziel (2020) have recently revisited the issue by predicting the 

distribution of daily average peak and off-peak prices over a horizon of seven days. Marcos et al. 

(2019a) evaluate the proposed hybrid model for Iberian day-ahead prices over both a day-ahead 

and a week-ahead forecasting horizon. We extend on them by investigating the forecasting 

performance of our hybrid model at each horizon individually. In addition, we do not only 

investigate the performance of the hybrid model relative to the benchmark models, but also 

consider relative performance among the benchmarks, providing empirical evidence on the 

predictive ability of popular EPF models over increasing forecasting horizons. 

The notions of recursive and direct forecasts are directly linked to the forecasting horizon. A 

multistep-ahead forecast is made recursively, if a one-step ahead model is iterated forward up to 

the required forecasting horizon, whereas a multistep-ahead forecast is made directly, if a specific 
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model for each horizon is estimated (e.g. Marcellino et al. (2006)). The relative predictive 

performance of the two approaches has been studied in other fields of the forecasting literature. 

In contrast to the theoretical result of increased robustness and reduced bias offered by direct 

forecasting models (e.g. Marcellino et al. (2006), Taieb and Atiya (2016)), empirical investigations 

in macroeconometrics have uncovered the opposite for both unconditional and conditional 

forecasts (e.g. Marcellino et al. (2006), McCracken and McGillicuddy (2019)). To the best of our 

knowledge, no previous study has compared recursive and direct forecasting models in the 

context of EPF. 

2.2 Testing literature 

The Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) constitute the two most 

popular scores for point forecast evaluation in the EPF literature (e.g. Gürtler and Paulsen (2018), 

Weron and Ziel (2019)). Whereas the former is a strictly proper scoring rule for median forecasts, 

the latter is a strictly proper scoring rule for mean forecasts. As both scores are scale dependent 

and do not easily facilitate forecast comparisons between different data sets, additional measures 

based on percentage and scaled forecast errors have been considered. Yet, Weron (2014) and 

Weron and Ziel (2019) conclude that the EPF literature has thus far not established an evaluation 

standard. 

Whereas a comparison of a chosen evaluation measure does allow for a ranking of individual 

forecasts, it does not allow to establish the statistical significance of deviations in accuracy 

between them. To this end, statistical tests of equal predictive ability are considered. The Diebold 

and Mariano (2002) (DM) test is widely applied in the EPF literature (e.g. Uniejewski et al. (2018), 

Ziel and Weron (2018) and Ugurlu et al. (2018)). It considers whether the loss differential series 

of two models exhibits an expected value of zero and is usually considered in its multivariate 

one-sided version (e.g. Ziel and Weron (2018)). Recently, a test outlined in Giacomini and White 

(2006) has gained popularity (e.g. Marcjasz et al. (2018), Serafin et al. (2019) and Marcjasz et al. 

(2020)). It is based on an alternative econometric framework to the DM test in the sense that 

forecasting models are compared at the estimated coefficients rather than the corresponding 

population values. One can test whether the loss differential series of two models exhibits an 

expected value of zero both unconditionally or conditionally. To the best of our knowledge, only 

the conditional version with lagged loss differentials has thus far been considered in the EPF 

literature (e.g. Serafin et al. (2019)); that is, the conditioning set considered contained a constant 

and lagged values of the loss differential. We extend on the previous applications of the test and 

consider both its unconditional form as well as its conditional form with a conditioning set 

containing a measure of uncertainty of renewable infeed. In addition, to assess relative model 
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performance over all horizons jointly, we are the first EPF study to consider a test proposed by 

Quaedvlieg (2021). 

3 Forecasting models and evaluation framework 

3.1 Electricity price forecasting models 

In the following section, we define the different forecasting models from the fundamental, 

econometric and hybrid model classes. The simplified electricity market model ParFuM 

introduced and extended by Kallabis et al. (2016), Pape et al. (2016) and Beran et al. (2019), 

among others, represents the class of fundamental models in the present work.1 It is characterized 

by accurate forecasting quality with comparatively low data requirements and very short 

calculation times. These properties are achieved through complexity reduction by considering 

aggregated technology classes, the absence of coupled time steps and the endogenous modelling 

of only one market area. The basis of ParFuM is a simple supply stack model, consisting of an 

ascending bid curve, which results from the marginal costs of electricity supply, and a quasi-

inelastic demand. Let 𝑡 denote the day of the forecast up to and at which all hourly spot market 

prices of the day are completely known and let 𝑘 denote the considered forecasting horizon in 

days. We forecast the hourly spot market prices 𝑝𝑡+𝑘,ℎ with ℎ ∈ {1, … 24} and 𝑘 ∈ {1, … , 𝐾}. The 

supply curve corresponds to the aggregated bid stack 𝐵𝑡+𝑘,ℎ(𝐷𝑡+𝑘,ℎ) of the available power plant 

capacities at a given demand 𝐷𝑡+𝑘,ℎ. In order to approximate the heterogeneity within the 

technology classes, different efficiency levels are considered. The demand 𝐷𝑡+𝑘,ℎ constitutes a 

forecast of the residual load, resulting from expected load minus the infeed from wind and solar 

as well as net cross-border exchange and must-run combined heat and power (CHP) production. 

The latter is approximated by a temperature-dependent function (cf. Beran et al. (2019)). The 

fundamental price 𝑝𝑡+𝑘,ℎ
𝑃𝑎𝑟𝐹𝑢𝑀,𝑘 of hour ℎ on day 𝑡 + 𝑘 results from the intersection of the supply 

and demand curves and corresponds to the marginal cost of the last power plant needed to satisfy 

demand. The following therefore applies for the horizon 𝑘 = 1: 

𝑝𝑡+1,ℎ
𝑃𝑎𝑟𝐹𝑢𝑀,1 = 𝐵𝑡+1,ℎ(𝐷𝑡+1,ℎ). (1) 

We define the pure ParFuM price as our first forecasting model, where the spot market price of a 

particular hour ℎ on day 𝑡 + 1 is given by the corresponding ParFuM price. 

 
1 A detailed description of the implemented model can be found in Beran et al. (2019). We adapt the basic 
structure of the model but provide a broader representation of negative prices. In the case of negative 
residual load, we obtain negative prices that are linearly interpolated between -100 €/MWh and 0 €/MWh. 
Our chosen range of values corresponds to the negative prices observed on the market, which result from 
the guaranteed remuneration payments for renewable feed-in. Beran et al. (2019) set the market price to 
constant -10 €/MWh in case of negative residual load. 
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ParFuM Model: 

𝑝𝑡+1,ℎ = 𝑝𝑡+1,ℎ
𝑃𝑎𝑟𝐹𝑢𝑀,1 (2) 

To account for structural biases in the ParFuM price forecast, an additional post-processing step 

is also considered. The ParFuM forecast constitutes the sole explanatory variable in a predictive 

regression, which allows for the mitigation of the potential biases through the estimated 

coefficients and lends the FunR model. 

FunR Model: 

𝑝𝑡+1,ℎ = 𝛽ℎ,0
1 (𝑡 + 1) + 𝛽ℎ,1

1 𝑝𝑡+1,ℎ
𝑃𝑎𝑟𝐹𝑢𝑀,1 + 𝜀𝑡+1,ℎ, (3) 

where 𝛽ℎ,0
1 (𝑡 + 1) denotes the following time-varying intercept that is common to all models. 

𝛽ℎ,0
1 (𝑡 + 1) = 𝛽ℎ,0,0

1 + 𝛽ℎ,0,1
1 sin

2𝜋(𝑡 + 1)

365.24
+ 𝛽ℎ,0,2

1 cos
2𝜋(𝑡 + 1)

365.24

+ 𝛽ℎ,0,3
1 sin

4𝜋(𝑡 + 1)

365.24
+ 𝛽ℎ,0,4

1 cos
4𝜋(𝑡 + 1)

365.24
+ 𝛽ℎ,0,5

1 𝐷𝑡+1
𝑀𝑜

+ 𝛽ℎ,0,6
1 𝐷𝑡+1

𝐹𝑟 + 𝛽ℎ,0,7
1 𝐷𝑡+1

𝑆𝑎 + 𝛽ℎ,0,8
1 𝐷𝑡+1

𝑆𝑢  

(4) 

The intercept is thus modelled as the sum of a constant term, a second-order Fourier 

approximation for seasonal effects and four dummy variables that capture calendar information. 

The dummies reflect whether the day of the forecast constitutes a Monday, Friday, Saturday or 

Sunday. In addition, all public holidays are modelled as either Saturday or Sunday, depending 

on whether they constitute local or nationwide public holidays. The days before and after a public 

holiday are modelled as Friday and Monday, respectively. 

Model ArR, the autoregressive model, belongs to the generic class of so-called expert models 

(e.g. Ziel and Weron (2018)) and represents the state-of-the-art econometric model for short-term 

EPF. The electricity price of a particular hour ℎ on day 𝑡 + 1 is modelled as a function of the day-

ahead price of the same hour lagged by one, two and seven days as well as the minimum, 

maximum and last day-ahead price of the previous day. 

ArR Model: 

𝑝𝑡+1,ℎ = 𝛽ℎ,0
1 (𝑡 + 1) + 𝛽ℎ,2

1 𝑝𝑡,ℎ + 𝛽ℎ,3
1 𝑝𝑡−1,ℎ + 𝛽ℎ,4

1 𝑝𝑡−6,ℎ + 𝛽ℎ,5
1 𝑝𝑡,𝑀𝑎𝑥

+ 𝛽ℎ,6
1 𝑝𝑡,𝑀𝑖𝑛 + 𝛽ℎ,7

1 𝑝𝑡,24 + 𝜀𝑡+1,ℎ 
(5) 

Similar to previous works in the EPF literature, we consider two extensions of the baseline 

autoregressive model with exogenous information. First, the fundamental price forecast from the 

ParFuM model is included, lending the FunArR model, which constitutes the first hybrid model. 

FunArR Model: 
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𝑝𝑡+1,ℎ = 𝛽ℎ,0
1 (𝑡 + 1) + 𝛽ℎ,1

1 𝑝𝑡+1,ℎ
𝑃𝑎𝑟𝐹𝑢𝑀,1 + 𝛽ℎ,2

1 𝑝𝑡,ℎ + 𝛽ℎ,3
1 𝑝𝑡−1,ℎ + 𝛽ℎ,4

1 𝑝𝑡−6,ℎ

+ 𝛽ℎ,5
1 𝑝𝑡,𝑀𝑎𝑥 + 𝛽ℎ,6

1 𝑝𝑡,𝑀𝑖𝑛 + 𝛽ℎ,7
1 𝑝𝑡,24 + 𝜀𝑡+1,ℎ 

(6) 

Second, we obtain model ArLoR by including a forecast of the day-ahead residual load 𝐿𝑡+1,ℎ
1 , 

which is defined as load minus the sum of wind power production, solar power production and 

net cross-border exchange, i.e. cross-border commercial schedules (CBCS). It thus constitutes a 

slightly altered definition of residual load to the one used for demand approximation in the 

ParFuM model. 

ArLoR Model: 

𝑝𝑡+1,ℎ = 𝛽ℎ,0
1 (𝑡 + 1) + 𝛽ℎ,2

1 𝑝𝑡,ℎ + 𝛽ℎ,3
1 𝑝𝑡−1,ℎ + 𝛽ℎ,4

1 𝑝𝑡−6,ℎ + 𝛽ℎ,5
1 𝑝𝑡,𝑀𝑎𝑥

+ 𝛽ℎ,6
1 𝑝𝑡,𝑀𝑖𝑛 + 𝛽ℎ,7

1 𝑝𝑡,24 + 𝛽ℎ,8
1 𝐿𝑡+1,ℎ

1 + 𝜀𝑡+1,ℎ 
(7) 

Note that the individual components of the residual load could have been included as separate 

regressors as in Maciejowska et al. (2020). The present model formulation therefore amounts to 

an implicit restriction of equality on the individual parameters motivated by the fact that a unit 

change in either variable should have the same effect on the bid stack and thus the clearing price. 

To further assess the informational content of predicted residual load for EPF, we consider two 

additional models. The LoR model results from a predictive regression with the predicted residual 

load as sole predictor, whereas the FunLoR model additionally incorporates the ParFuM price 

forecast. 

LoR Model: 

𝑝𝑡+1,ℎ = 𝛽ℎ,0
1 (𝑡 + 1) + 𝛽ℎ,8

1 𝐿𝑡+1,ℎ
1 + 𝜀𝑡+1,ℎ (8) 

FunLoR Model: 

𝑝𝑡+1,ℎ = 𝛽ℎ,0
1 (𝑡 + 1) + 𝛽ℎ,1

1 𝑝𝑡+1,ℎ
𝑃𝑎𝑟𝐹𝑢𝑀,1 + 𝛽ℎ,8

1 𝐿𝑡+1,ℎ
1 + 𝜀𝑡+1,ℎ (9) 

Finally, the combination of all preceding model components lends the full model, labelled FullR. 

It nests all other considered models, which can be derived from it using restrictions on its 

parameter space. 

FullR Model: 

𝑝𝑡+1,ℎ = 𝛽ℎ,0
1 (𝑡 + 1) + 𝛽ℎ,1

1 𝑝𝑡+1,ℎ
𝑃𝑎𝑟𝐹𝑢𝑀,1 + 𝛽ℎ,2

1 𝑝𝑡,ℎ + 𝛽ℎ,3
1 𝑝𝑡−1,ℎ + 𝛽ℎ,4

1 𝑝𝑡−6,ℎ

+ 𝛽ℎ,5
1 𝑝𝑡,𝑀𝑎𝑥 + 𝛽ℎ,6

1 𝑝𝑡,𝑀𝑖𝑛 + 𝛽ℎ,7
1 𝑝𝑡,24 + 𝛽ℎ,8

1 𝐿𝑡+1,ℎ
1 + 𝜀𝑡+1,ℎ 

(10) 

3.2 Forecasting framework 

To elucidate the underlying information set, all models have thus far been formulated in their 

day-ahead form, where the electricity price is modelled based on information available on the 

previous day 𝑡, including day-ahead forecasts of the exogenous variables. It should be noted that 
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the above formulations therefore constitute the parameter estimation equations of the recursive 

models, identified by R at the end of the model name. In the recursive framework, the model 

coefficients are estimated over the day-ahead horizon (𝑘 = 1), as denoted by the superscripted 1. 

To forecast over all horizons 𝑘 ∈ {1, … , 𝐾}, the parameter estimates �̂�ℎ
1 are fixed and the resulting 

day-ahead model is applied recursively. Since some recursive models contain autoregressive 

elements, not all values of the explanatory variables are known at the time of forecasting. Any 

value of an autoregressive variable that is unknown is replaced by the corresponding forecast 

from a previous recursion (see Table 5 in Appendix A1). The forecasting equations of the recursive 

models are presented in Appendix A1. 

Additionally, the present paper considers all models in their so-called direct form. In the direct 

framework, a model is based on exactly the same information available on day 𝑡, but rather than 

estimating the parameters over the day-ahead horizon and applying the resulting day-ahead 

model recursively, the coefficients are estimated separately for each forecasting horizon 𝑘. 

Consequently, a horizon-specific parameter set 𝛾ℎ
𝑘 is associated with the predictors and forecasts 

over the different horizons can be directly obtained. It should be noted that the values of all 

predictors are immediately known at the time of forecast issuance. The estimation and forecasting 

equations for the direct formulations of all models, identified by D at the end of the model name, 

are also presented in Appendix A1 and the 𝑘-day-ahead estimation horizon is now denoted by 

the superscripted 𝑘 on the coefficients. 

Figure 1 illustrates the recursive and direct forecasting framework and highlights the basic 

differences in terms of estimation and forecasting. The estimation of parameters for the individual 

hours constitutes the first step in both frameworks. It is considered either for the day-ahead 

horizon only or for each horizon individually. Yet, in both frameworks, parameters are estimated 

based on a fixed window of size 𝜏 rolled forward in time. The available information on the day 

of forecast issuance 𝑡 depends on the gate closure of the considered market area. In this paper, 

we focus on the German day-ahead auction and thus the relevant gate closure is at 12.00 

CET/CEST. To ensure that both parameter estimation and forecasting only use information that is 

known at gate closure, we set the information cut-off time at 11.40 CET/CEST. This definition 

leaves a small amount of computation time and processing buffer until the actual gate closure at 

12.00 CET/CEST (marked in dark grey in Figure 1). This cut-off time implies that at time of 

parameter estimation the prices of the current day 𝑡 are completely known from the auction held 

the day before (known prices are marked in light grey in Figure 1). Based on the estimated 

parameters, the forecasts for all hours and over all horizons 𝑘 ∈ {1, … , 𝐾} are calculated. Note 

that the first hour to be predicted is the first hour of the following day 𝑡 + 1 (prices to be predicted 

are marked in white in Figure 1). 
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Figure 1: Recursive and direct model estimation and forecasting 

3.3 Validation and evaluation 

The predictive performance of the considered models is evaluated in an out-of-sample forecasting 

study. Let 𝑇 and 𝜏 denote the sample size and the estimation window size, respectively. The first 

𝑘-step-ahead forecast of the electricity price of hour ℎ on day 𝑡 + 𝑘 from model 𝑖, �̂�𝑡+𝑘,ℎ
𝑖,𝑘 , is 

calculated based on the first 𝜏 observations, while consecutive 𝑘-step-ahead forecasts are 

calculated based on 𝜏 observations shifted forward in time. Thus, the employed rolling window 

procedure yields 𝑛 = 𝑇 − 𝜏 − 𝑘 + 1 𝑘-step-ahead forecasts indexed 𝜏, … , 𝑇 − 𝑘 for evaluation. 

The out-of-sample sequences of 𝑘-step-ahead forecast, realized price and associated 𝑘-step-

ahead forecast error are given by {�̂�𝑡+𝑘,ℎ
𝑖,𝑘 }𝑡=𝜏

𝑇−𝑘, {𝑝𝑡+𝑘,ℎ}𝑡=𝜏
𝑇−𝑘 and {𝜀�̂�+𝑘,ℎ

𝑖,𝑘 }𝑡=𝜏
𝑇−𝑘, respectively. 

The first considered metric of predictive performance is the mean absolute error (MAE) across all 

hours ℎ ∈ 𝛨 and all days 𝑡 ∈ 𝛷 defined as 
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𝑀𝐴𝐸𝛷,𝛨
𝑖,𝑘 =

1

#𝛷#𝛨
∑ ∑ |�̂�𝑡+𝑘,ℎ

𝑖,𝑘
|ℎ∈𝛨𝑡∈𝛷 , (11) 

where #𝛷 and #𝛨 denote the cardinality of the sets 𝛷 and 𝛨, respectively. This notation is flexible 

enough to include the MAE over the entire hold-out sample (i.e., 𝛷 = {𝜏, … , 𝑇 − 𝑘} and 𝛨 =

{1, … ,24}) but also over individual hours ℎ ∈ 𝐻 and subperiods (e.g. weeks). 

As the level of electricity prices varies strongly over the course of a year, the MAE may provide 

misleading results when comparing different subperiods within the considered evaluation period. 

For such comparisons, an error measure adjusted for the respective period’s price level is more 

appropriate. We consider a version of the Weighted Mean Absolute Error (WMAE), for which the 

MAE is normalized by the mean price of the considered period (cf. Weron (2014)). 

𝑊𝑀𝐴𝐸𝛷,𝛨
𝑖,𝑘 =

1
#𝛷#𝛨

∑ ∑ |�̂�𝑡+𝑘,ℎ
𝑖,𝑘

|ℎ∈𝛨𝑡∈𝛷

1
#𝛷#𝛨

∑ ∑ 𝑝𝑡+𝑘,ℎℎ∈𝛨𝑡∈𝛷

 (12) 

We use this WMAE statistic particularly for a first graphical analysis of forecasting performance 

over our evaluation period. 

While a comparison of MAE (or also WMAE) values provides a ranking of models, it does not 

allow to establish conclusions on statistically significant differences in forecasting performance 

between them. To this end, we define the pairwise loss differential for forecasts over horizon 𝑘 

between models 𝑖 and 𝑗 as 𝑑𝑡+𝑘
𝑖𝑗,𝑘

= ‖𝜀�̂�+𝑘
𝑖,𝑘 ‖

1
− ‖𝜀�̂�+𝑘

𝑗,𝑘
‖

1
 and base hypothesis tests of predictive 

ability on the out-of-sample loss differential sequence {𝑑𝑡+𝑘
𝑖𝑗,𝑘

}
𝑡=𝜏

𝑇−𝑘
. 

Giacomini and White (2006) develop a test of equal predictive ability between two models 

conditional on some information set. The null hypothesis of conditional equal predictive ability 

(CEPA) is formulated as Ε[𝑑𝑡+𝑘
𝑖𝑗,𝑘

|𝒢𝑡] = 0, where 𝒢𝑡 denotes said information set. There are two 

refinements of this null hypothesis that are of primary interest. First, the conditioning set is equal 

to the trivial 𝜎-field, i.e. 𝒢𝑡 = {∅, Ω}. Second, the conditioning set is equal to the information set 

available at the time of forecast issuance, i.e. 𝒢𝑡 = ℱ𝑡. The former is shown to amount to a test of 

unconditional equal predictive ability (UEPA) in the spirit of Diebold and Mariano (2002). 

A test of UEPA considers whether two models exhibit equal forecasting performance on average. 

If a statistically significant difference is established, the model with the lower average loss is 

selected. In contrast, a test of CEPA considers whether the relative performance of two models 

can itself be predicted with information available at the time of forecast issuance and exploits 

this information for model selection, if the null hypothesis is rejected. Thus, the forecast user may 

find the models to predict equally well on average (UEPA null hypothesis fails to reject) but may 
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be able to select a model based on current information rather than just past average performance 

(CEPA null hypothesis rejects). It should be noted that the null hypothesis of CEPA should be 

rejected, if the null hypothesis of UEPA is rejected, although Giacomini and White (2006) 

establish situations where this counterintuitive result may arise. 

The present study considers a measure of uncertainty of renewable infeed as conditioning 

variable. If two of the considered specifications predict equally well on average, we test whether 

one of the models is more reliable in case of heightened renewable uncertainty, which we 

consider a case of primary interest in a power system that is increasingly based on renewable 

energy sources. 

The test statistic of the UEPA test with null hypothesis 𝐻0
𝑈𝐸𝑃𝐴: Ε[𝑑𝑡+𝑘

𝑖𝑗,𝑘
] = 0 is defined as 

𝑠𝑈𝐸𝑃𝐴
𝑖𝑗,𝑘

=
𝑛−1 ∑ 𝑑𝑡+𝑘

𝑖𝑗,𝑘𝑇−𝑘
𝑡=𝜏

√�̂�𝑛
2

𝑛
 

 ~ 𝑁(0,1), (13) 

where �̂�𝑛
2 denotes a suitable estimator of the long-run variance of {𝑑𝑡+𝑘

𝑖𝑗,𝑘
}

𝑡=𝜏

𝑇−𝑘
. The UEPA test 

coincides with the original DM test but the result is derived under assumptions allowing for 

parameter estimation. Thus, the test allows for the evaluation of forecasting models at the finite-

sample estimates of the coefficients rather than their population values. 

The null hypothesis of the CEPA test is formulated as 𝐻0
𝐶𝐸𝑃𝐴: Ε[𝑑𝑡+𝑘

𝑖𝑗,𝑘
|ℱ𝑡] = 0. Yet, to 

operationalize the test a 𝑞 × 1 ℱ𝑡–measurable vector ℎ𝑡 is considered instead of ℱ𝑡. Thus, ℎ𝑡 

contains a constant and the 𝑞 − 1 variables believed to account for the difference in forecasting 

performance of the two models. The test statistic is based on the sequence {ℎ𝑡𝑑𝑡+𝑘
𝑖𝑗,𝑘

}
𝑡=𝜏

𝑇−𝑘
 and 

defined as 

𝑆𝐶𝐸𝑃𝐴
𝑖𝑗,𝑘

= (𝑛−1 ∑ ℎ𝑡𝑑𝑡+𝑘
𝑖𝑗,𝑘𝑇−𝑘

𝑡=𝜏 )
′

[
Ω̂𝑛

𝑛
]

−1

(𝑛−1 ∑ ℎ𝑡𝑑𝑡+𝑘
𝑖𝑗,𝑘𝑇−𝑘

𝑡=𝜏 ) ~ 𝜒𝑞
2, (14) 

where Ω̂𝑛 denotes a suitable estimator of the long-run variance of {ℎ𝑡𝑑𝑡+𝑘
𝑖𝑗,𝑘

}
𝑡=𝜏

𝑇−𝑘
. 

It should be noted that the CEPA null hypothesis not only imposes restrictions on the first moment 

of ℎ𝑡𝑑𝑡+𝑘
𝑖𝑗,𝑘  but also on its second moments. Specifically, the lag length to be considered for the 

heteroskedasticity-and-autocorrelation-consistent (HAC) estimation of Ω̂𝑛 is given by 𝑘 − 1. No 

such results can be established under the UEPA null hypothesis, which only imposes restrictions 

on the first moment of 𝑑𝑡+𝑘
𝑖𝑗,𝑘 , and thus the lag length for the HAC estimation of �̂�𝑛

2 must be selected 

by the forecaster. Yet, as the size properties of the Giacomini and White (2006) tests can be 
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improved using a sample-dependent lag length, we set the lag length to ⌊4 (
𝑛

100
)

2/9
⌋ for the 

estimation of both �̂�𝑛
2 and Ω̂𝑛 (cf. McCracken (2019)). 

A rejection of a null hypothesis of equal predictive ability subsequently requires a logic to select 

the better model. Whereas the UEPA test can be considered as a one-sided test, which directly 

provides such logic, the CEPA test cannot. Note that the rejection of the CEPA null hypothesis 

effectively means that the relative performance of the two models 𝑑𝑡+𝑘
𝑖𝑗,𝑘  can be predicted using 

ℎ𝑡. Thus, one can estimate the regression 𝑑𝑡+𝑘
𝑖𝑗,𝑘

= 𝜙𝑖𝑗,𝑘′
ℎ𝑡 + 𝜂𝑡+𝑘

𝑖𝑗,𝑘  over the out-of-sample period 

and use the predicted values of the loss differential, i.e. {�̂�𝑡+𝑘
𝑖𝑗,𝑘

}
𝑡=𝜏

𝑇−𝑘
= {�̂�𝑖𝑗,𝑘′

ℎ𝑡}
𝑡=𝜏

𝑇−𝑘
, for model 

selection (e.g. Giacomini and White (2006)). We follow Granz era and Sekhposyan (2019) and 

construct the statistic 

𝐼𝑖𝑗,𝑘 =
∑ |�̂�𝑡+𝑘

𝑖𝑗,𝑘
|1{�̂�𝑡+𝑘

𝑖𝑗,𝑘
≤0}𝑇−𝑘

𝑡=𝜏

∑ |�̂�𝑡+𝑘
𝑖𝑗,𝑘

|𝑇−𝑘
𝑡=𝜏

, (15) 

which constitutes a loss-differential-weighted average of an indicator series showing whether 

model 𝑖 is expected to forecast superiorly. Since 𝐼𝑖𝑗,𝑘 is bounded between 0 and 1, model 𝑖 is 

preferred, if 𝐼𝑖𝑗,𝑘 is greater than 0.5. 

The aforementioned tests of equal predictive ability consider the models at each forecasting 

horizon individually. Consequently, the possibility of inconsistent results of model comparison 

across different horizons arises. To address this shortcoming, Quaedvlieg (2021) proposes a test 

of average superior predictive ability (aSPA), that evaluates model performance over multiple 

horizons jointly. We denote by 𝑑𝑡+𝑘
𝑖𝑗  the weighted average of the loss differential over all 

considered forecasting horizons 𝑘 ∈ {1, … , 𝐾}, 

𝑑𝑡+𝑘
𝑖𝑗

= [𝑤1, … , 𝑤𝐾] [
𝑑𝑡+𝑘

𝑖𝑗,1

⋮

𝑑𝑡+𝑘
𝑖𝑗,𝐾

], (16) 

and test the null hypothesis 𝐻0
𝑎𝑆𝑃𝐴: Ε[𝑑𝑡+𝑘

𝑖𝑗
] ≤ 0. Note that this allows for outperformance at some 

horizons to balance out underperformance at other horizons. As in Giacomini and White (2006), 

the asymptotics of the test are such that models are evaluated at the estimated parameter values. 

The test statistic is defined as  

𝑠𝑎𝑆𝑃𝐴
𝑖𝑗

=
(𝑇−𝐾−𝜏+1)−1 ∑ 𝑑𝑡+𝑘

𝑖𝑗𝑇−𝐾
=𝜏

√
�̂�(𝑇−𝐾−𝜏+1)

2

(𝑇−𝐾−𝜏+1)

, 
(17) 
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where �̂�(𝑇−𝐾−𝜏+1)
2  denotes a suitable estimator of the long-run variance of {𝑑𝑡+𝑘

𝑖𝑗
}

𝑡=𝜏

𝑇−𝐾
. The aSPA 

test thus amounts to a DM-type test on the average loss differential across different forecasting 

horizons. Whereas the test statistic could be compared to a normal distribution, Quaedvlieg 

(2021) maintains that bootstrapping the critical values is to be preferred. 

4 Results and discussion 

4.1 Data 

The proposed models are evaluated in a forecasting study of hourly German day-ahead prices 

for the full year 2016.2 Due to the rolling window approach with an estimation window size of 

𝜏 = 730 days, the entire sample size is 𝑇 = 1096 and comprises the years 2014, 2015 and 2016. 

In order to examine the forecasting horizons day ahead until week ahead, we set 𝐾 = 7. We 

choose to examine this somewhat distant period, because our models require authentic historical 

forecasts across all horizons. As discussed later in this section, the availability of such forecast 

data is very limited and data providers are very reluctant to publish their more recent forecasting 

histories. 

Table 1 provides an overview of the data used for estimation and forecasting as well as its 

availability and sources. Except for the purely autoregressive models ArR and ArD, the models 

use fundamental or fundamentally determined information. In accordance with the principle of 

day-ahead markets, which trade today for tomorrow, forecast values for these fundamental data 

must be used. Since we forecast prices for the daily horizons 𝑘 ∈ {1, … ,7}, predictions of the 

fundamental regressors are required across all these horizons. Thus, in our setting, the values for 

ParFuM prices, solar infeed, wind infeed and residual load are to be understood as forecasted 

values at the time of the information cut-off on day 𝑡. According to Section 3.1, the residual load 

is composed of the forecasts for expected load, wind and solar infeed-in, CBCS volumes and, 

within the ParFuM setting, also must-run CHP production. Hourly load data (day-ahead forecasts 

and total values) are publicly available via the ENTSO-E transparency platform. Unfortunately, 

hourly load forecasts for horizons 𝑘 > 1 are not publicly available there and, as far as we know, 

also nowhere else. We therefore generate load forecasts for horizons 𝑘 > 1 by means of a simple 

SARIMA model. In a first step, we consider annual seasonality through a cosine function and 

capture weekly structures using dummy variables for the individual hours of the week. Public 

holidays are treated as either Saturdays or Sundays, in line with standard forecasting practice (see 

Section 3.1). We subsequently estimate the residuals using a rolling window SARIMA model with 

a three-year sample size. Since we forecast day-ahead hourly load values in line with the 

 
2 Before 1st October 2018, the day-ahead spot market auction was held jointly for the German and Austrian 
market areas. Thus, this joint “EPEX Spot Germany/Austria” price is the focus of our analyses. 
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definition of the data publications of the ENTSO-E transparency platform, our load forecast data 

set reflects only about 86% of the actual German load (grid losses, parts of industrial and traction 

power stations, etc., see Beran et al. (2019) and Hirth and Schumacher (2015)). Thus, we follow 

Beran et al. (2019) to scale these forecasted load values to the corresponding IEA monthly values. 

Table 1: Raw data sources and used data for all horizons 

Data Data description Resolution3 Available 
fc horizons 

Source 

Coal price API#2 (CIF ARA) future (front month) D t+1 … t+7 
Marex Spectron via 
Energate-Messenger 

Gas price NCG OTC day-ahead quotation D t+1 … t+7 
Marex Spectron via 
Energate-Messenger 

Oil price Europe Brent spot FOB quotation D t+1 … t+7 
U.S. Energy Information 
Administration 

CO2 price 
EEX 3. Period European carbon futures 
quotation (front year) 

D t+1 … t+7 
EEX via Energate-
Messenger 

Wind infeed German wide wind energy infeed QH t+1 … t+7 
Anonymous professional 
forecast provider 

Solar infeed German wide solar energy infeed QH t+1 … t+7 
Anonymous professional 
forecast provider 

Temperature Average German wide temperature H 
t+1 … t+34 
t+1 … t+7 

Anonymous professional 
forecast provider 

Load 
Electricity supplied M - IEA 
Day-ahead hourly load values H t+1 ENTSO-E transparency 
Simple fc model for hourly load values H t+2 … d+7 SARIMA model 

Cross-border 
trade 

Scheduled commercial exchanges H t+1 ENTSO-E transparency 

Forecast model for hourly CBCS values H t+2 … t+7 
Non-linear model (logistic 
transformation and 
multiple regression) 

Capacity 

EEX master data power D - EEX Transparency 

Installed net generation capacity Y - 
ENTSO-E (2015)ENTSO-E 
(2016), ENTSO-E (2017), 
ENTSO-E transparency,  

Power plant list D - BNetzA 
Availability Non-usability generation (ex ante & ex post) H t+1 … t+7 EEX Transparency 
Must-run CHP CHP production volumes Y - Öko-Institut (2015) 
Electricity 
price 

EPEX spot Germany/Austria Phelix 
quotation 

H t+1 EPEX SPOT 

For wind and solar infeed there exist publicly available forecasts and estimates for the day-ahead 

horizon, e.g. published by the German transmission system operators and the ENTSO-E 

transparency platform. However, there is no public data source for hourly historical forecasts 

over the required horizons 𝑘 > 1. As especially the uncertainty of wind and solar infeed can vary 

greatly between days, it is crucial to consider authentic data here. We therefore use data of an 

anonymous professional forecast provider who provides historical forecast data for all years and 

horizons in our study. The data provider updates its forecasts several times per day. In each case, 

the forecasts that are as close as possible to the information cut-off deadline are considered in 

 
3 The resolution column states the temporal resolution of the original data source: Y=Yearly, M=Monthly, 
D=Daily, H=Hourly, QH=Quarter-hourly. All timeseries are edited to become hourly input data for the 
fundamental model. Missing data is interpolated. 
4 For the years 2014 and 2015 only temperature forecasts for horizons k=1 to k=3 are available. We set 
temperature forecasts for horizons k>3 to the k=3 forecast values. For the year 2016, temperature forecasts 
for all considered horizons are available. 
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the models. Since Germany’s electricity grid is highly interconnected with its European 

neighbors, cross-border-trade is important for German electricity markets and thus constitutes a 

substantial part of the residual load considered in all fundamental models described. The most 

comprehensive public source for these cross-border trade flows is the ENTSO-E transparency 

platform, which in principle contains data on the day-ahead horizon and total values (i.e. the 

sum of cross-border flows traded on day-ahead and intraday markets). Unfortunately, these data 

are extremely incomplete for the years under consideration (cf. Hirth et al. (2018)) and, moreover, 

they are not published for the required longer horizons 𝑘 > 1. Thus, in a first step, we adjust the 

published data to provide an hourly aggregated day-ahead cross-border balance value 𝑇𝐵𝑡+1,ℎ 

for Germany for the years 2014 to 2016. Kallabis et al. (2016) and Beran et al. (2019) develop 

multiple regression models to predict day-ahead CBCS flows. We improve the approximation 

accuracy even further by developing a multiple regression model as described in equation (18).5 

Equation (19) indicates that the explained variable is an inverse sigmoid transform of the 

aggregated cross-border balance 𝑇𝐵𝑡+1,ℎ. It has been chosen as cross-border exchanges are 

limited by the maximum transmission capacities and the parameter 𝑅𝑒𝑓 corresponds to the 

maximum achievable cross-border exchange.6 

𝑧𝑡+1,ℎ
𝑇𝐵 = 𝛽0 + 𝛽1𝑊𝑡+1,ℎ + 𝛽2𝑃𝑉𝑡+1,ℎ + 𝛽3𝐿𝑡+1,ℎ + 𝛽4𝐴𝑣𝐶𝑎𝑝𝑡+1,ℎ

𝐿𝐼𝐺

+ 𝛽5𝐴𝑣𝐶𝑎𝑝𝑡+1,ℎ
𝑁𝑈𝐶 + 𝛽6𝐶𝑂2𝑡+1,ℎ + 𝜀𝑡+1,ℎ 

(18) 

𝑧𝑡+1,ℎ
𝑇𝐵 = 𝑠𝑐𝑎𝑙 ∙ 2 ⋅ 𝑎𝑟𝑡𝑎𝑛ℎ (

𝑇𝐵𝑡+1,ℎ

𝑅𝑒𝑓
) = 𝑠𝑐𝑎𝑙 ∙ ln (

1 +
𝑇𝐵𝑡+1,ℎ

𝑅𝑒𝑓

1 −
𝑇𝐵𝑡+1,ℎ

𝑅𝑒𝑓

) (19) 

The adopted non-linear approach explains 79% of the variance of the CBCS flow 𝑇𝐵𝑡+1,ℎ which 

is significantly higher than the adj. R² values in Kallabis et al. (2016) (~52%) and Beran et al. 

(2019) (~60%). We estimate the regression parameters with data over the 𝑘 = 1 horizon and use 

them to forecast the cross-border flows for horizons 𝑘 > 1.7 These parameter estimates are then 

used together with predictions of the regressor variables to obtain the CBCS values for the 

 
5 𝐴𝑣𝐶𝑎𝑝𝑡+1,ℎ

𝐿𝐼𝐺  and 𝐴𝑣𝐶𝑎𝑝𝑡+1,ℎ
𝑁𝑈𝐶  in equation (18) correspond to the available capacity of lignite fired and 

nuclear power plants. These power stations are rather inflexible and produce at low variable cost and thus 
have a significant effect on hourly CBCS volumes. 
6 The parameter 𝑅𝑒𝑓 in equation (19) might in principle be estimated using a non-linear regression setting. 
In order to avoid convergence problems, we instead set 𝑅𝑒𝑓 = 25000, which is an expert estimate of the 
maximum export/import capability. The scaling parameter 𝑠𝑐𝑎𝑙 is introduced to obtain regression 
coefficients of interpretable size. By choosing a typical cross-border exchange value as reference point 
𝑅𝑒𝑓𝑝𝑜𝑖𝑛𝑡, we compute the scaling factor as  

𝑠𝑐𝑎𝑙 = 𝑅𝑒𝑓𝑝𝑜𝑖𝑛𝑡/ ln (
𝑅𝑒𝑓+𝑅𝑒𝑓𝑝𝑜𝑖𝑛𝑡

𝑅𝑒𝑓−𝑅𝑒𝑓𝑝𝑜𝑖𝑛𝑡
). Setting 𝑅𝑒𝑓𝑝𝑜𝑖𝑛𝑡 = 5000 we get 𝑠𝑐𝑎𝑙 = 12332.02. The estimated 

coefficients 𝛽 then reflect the impact strengths of the corresponding factor on the exchange balance at the 
chosen reference point. 
7 Directly estimating the regression parameters for each horizon resulted in lower adj. R² values in contrast 
to the implemented approach. 



 

 
17 

forecasting equations (see Appendix A1) of the corresponding horizons. Similarly, the 

fundamental prices from ParFuM are generated as forecasts over all horizons. On the demand 

side, the residual load described above is additionally adjusted by a temperature-driven share of 

must-run capacity. The approach is developed in Kallabis et al. (2016) and Pape et al. (2016). 

The ParFuM version implemented here has been extended and described in Beran et al. (2019). 

For the horizons 𝑘 > 1, temperature forecasts for the different horizons are used. For the 

construction of the supply curve in ParFuM, fuel and CO2 prices as well as installed capacities 

and power plant availabilities are additionally required according to Section 3.1. For the 

calculation of the variable costs of the individual power plant classes, the products with shortest 

time to maturity quoted on markets for the respective fuels or CO2 certificates are considered, 

taking into account the information cut-off date. We assume that the installed capacity considered 

changes over time, but not over the chosen horizons. The hourly calculation of power plant 

availability follows the procedure from Beran et al. (2019). However, only those non-availability 

notifications for the respective horizons that were publicly reported at the information cut-off 

time are taken into account. 

In addition, a measure of uncertainty of renewable infeed is considered as the conditioning 

variable in the CEPA test introduced by Giacomini and White (2006). It is calculated based on 

all renewable infeed forecasts for a particular day 𝑡 + 𝑘 received prior to the defined cut-off. 

Specifically, let �̂�𝑡+𝑘,ℎ
𝑘  denote the predicted wind power infeed for hour ℎ on day 𝑡 + 𝑘, which 

has been received on day 𝑡 and thus constitutes a forecast over horizon 𝑘. We consider the set 

{�̂�𝑡+𝑘,ℎ
𝑗

: 𝑗 ≥ 𝑘} and calculate the standard deviation normalized by the mean of all forecasts in 

the set. Performing the calculation for all hours and for wind as well as solar predictions, lends a 

48 × 1 vector of normalized standard deviations that is observed for each considered forecasting 

horizon 𝑘 over the out-of-sample test set. Following Granz era and Sekhposyan (2019), we 

consider the first principal component of the normalized standard deviations as conditioning 

variable. It should be noted that only information that has been available at or prior to the time 

of forecasting is used and that the transformation via principal component analysis simply reduces 

the dimensionality of the conditioning set. 

4.2 Descriptive and energy economic results 

In the following, we assess and compare the forecasting performance of the models for the entire 

year 2016. Except for the year 2020, which was strongly influenced by the Covid-19 pandemic8, 

the considered year 2016 has the lowest base price level of the past 10 years (28.98 €/MWh) and 

 
8 The Covid-19 pandemic and the associated slowdown in public and economic life resulted in lower 
electricity demand and thus comparatively low wholesale electricity prices. 
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shows an average price volatility (coefficient of variation ~43%). The day-ahead prices are 

characterized by very high prices at the end of January and a very volatile December with initially 

rather high positive and then strongly negative prices (cf. upper panel of Figure 2). The price level 

was relatively low in the first half of the year due to low coal and gas prices. From August 

onwards, prices gradually increased and were very high, especially in Q4. In addition to 

increasing fuel prices, high electricity prices in France influenced the German spot market at the 

end of the year. French prices were particularly high because a number of nuclear power plants 

were temporarily shut down due to safety concerns and thus German exports to France were 

permanently high during that period.9 The highest price of 104.96 €/MWh was realized on 

Tuesday, 8th November 2016 and the most negative price of -130.09 €/MWh on Mother’s Day, 

8th May 2016. 

Table 2 provides descriptive statistics of the observed and predicted prices for the day-ahead 

horizon, i.e. 𝑘 = 1. Note that the recursive and direct specifications are identical over the 

forecasting horizon of one day. There is not a single model that performs best in terms of all 

descriptive indicators at the same time. However, it is evident that the autoregressive and hybrid 

models perform better than the purely fundamental models (ParFuM and FunR/FunD) over the 

day-ahead horizon. The state-of-the-art model of the short-term EPF literature, i.e. ArR/ArD, is 

the best in terms of mean as well as minimum and one of the best in terms of the standard 

deviation, the number of negative prices, prices above 50 €/MWh as well as the average daily 

price range, where it is narrowly outperformed by the hybrid model ArLoR/ArLoD. Clearly, the 

purely fundamental models (ParFuM and FunR/FunD) perform considerably worse. In particular, 

they fail to adequately predict volatility and negative prices. This is in line with the evaluation 

literature for fundamental models, which states that fundamental models have systematic 

difficulties in reproducing and forecasting extreme prices. Interestingly, however, FunR/FunD and 

ParFuM show the best performance in terms of very high prices (75 €/MWh and above) and 

forecasting of the maximum. Moreover, a simple post-processing of the ParFuM price using a 

regression with seasonal effects brings the fundamental predictions much closer to the observed 

prices. Thus, post-processing may be very beneficial for a given fundamental model. 

 
9 A detailed analysis of the impact on the German French cross-border flows and German/Austrian day-
ahead prices due to the inspection of the French nuclear power plants is presented by Rinne (2019). 
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Table 2: Descriptive statistics for horizon k=1. Bold values indicate the best three models regarding each 
descriptive indicator. Bold and underlined values highlight the best model. 

𝒌 = 𝟏 mean s.d. min max #neg #ab50 #ab75 #ab100 mDS 
Observed 29.04 12.50 -130.09 104.96 96 391 30 1 23.46 
ParFuM 27.78 6.85 6.80 95.96 0 54 8 0 9.33 

FunR/FunD 28.48 9.87 -14.88 98.23 13 173 7 0 22.56 
ArR/ArD 29.32 10.93 -25.20 73.62 40 379 0 0 22.76 
LoR/LoD 31.10 10.98 -6.98 67.10 39 336 0 0 25.25 

FunArR/FunArD 28.42 10.56 -24.74 92.01 36 301 3 0 21.70 
ArLoR/ArLoD 29.97 11.27 -18.96 74.29 54 383 0 0 23.73 

FunLoR/FunLoD 29.86 10.33 -10.99 90.35 37 235 4 0 22.87 
FullR/FullD 29.40 10.84 -19.73 85.67 50 339 3 0 22.49 

s.d.= standard deviation; #neg=number of negative hours; #ab50/75/100 = number of positive prices above 

50/75/100 €/MWh; mDS=mean daily spread defined as 𝑚𝐷𝑆 =
1

𝑛
∑ 𝐷𝑆𝑡+𝑘

𝑇−𝑘
𝑡=𝜏  with 𝐷𝑆𝑡+𝑘 = �̂�𝑡+𝑘,𝑀𝑎𝑥

𝑘 − �̂�𝑡+𝑘,𝑀𝑖𝑛
𝑘  

and 𝑛 = 𝑇 − 𝜏 − 𝑘 + 1. 

Table 3 presents the descriptive statistics for all models over the week-ahead horizon, i.e. 𝑘 = 7. 

It should be noted that the recursive and direct specifications are no longer identical. As the 

forecasting horizon increases, the models overall reflect the price volatility and range more 

inaccurately: standard deviations, the number of correctly predicted negative and extreme 

positive prices decline significantly. Also, the purely autoregressive models ArR and ArD are not 

among the best performing models in terms of any of the considered indicators. 

Table 3: Descriptive statistics for horizon k=7. Bold values indicate the best three models regarding each 
descriptive indicator. Bold and underlined values highlight the best models. 

𝒌 = 𝟕 mean s.d. min max #neg #ab50 #ab75 #ab100 mDS 
Observed 29.04 12.50 -130.09 104.96 96 391 30 1 23.46 
ParFuM 25.12 5.49 -97.05 60.51 7 14 0 0 6.63 

FunR 25.82 10.33 -291.57 67.31 21 25 0 0 23.21 
ArR 30.34 8.76 0.91 64.89 0 95 0 0 22.83 
LoR 28.98 10.45 -30.99 67.84 42 120 0 0 25.08 

FunArR 25.36 9.12 -103.07 68.63 14 32 0 0 20.84 
ArLoR 27.69 10.45 -31.07 69.86 56 106 0 0 24.02 

FunLoR 27.17 9.37 -30.36 70.18 42 49 0 0 22.26 
FullR 26.45 9.55 -27.21 71.99 50 54 0 0 21.43 
FunD 30.00 9.42 -103.39 71.39 8 158 0 0 22.81 
ArD 30.79 8.96 1.21 64.65 0 143 0 0 22.68 
LoD 31.49 9.61 -7.29 63.86 6 208 0 0 24.18 

FunArD 29.85 9.38 -102.84 70.72 6 166 0 0 22.40 
ArLoD 31.13 9.40 -7.91 62.46 5 196 0 0 23.11 
FunLoD 30.91 9.37 -6.86 72.62 2 184 0 0 22.81 
FullD 30.77 9.29 -0.03 77.12 1 199 2 0 22.33 

s.d.= standard deviation; #neg=number of negative hours; #ab50/75/100 = number of positive prices 

above 50/75/100 €/MWh; mDS=mean daily spread defined as 𝑚𝐷𝑆 =
1

𝑛
∑ 𝐷𝑆𝑡+𝑘

𝑇−𝑘
𝑡=𝜏  with 𝐷𝑆𝑡+𝑘 =

�̂�𝑡+𝑘,𝑀𝑎𝑥
𝑘 − �̂�𝑡+𝑘,𝑀𝑖𝑛

𝑘  and 𝑛 = 𝑇 − 𝜏 − 𝑘 + 1. 

 

The results of the score-based evaluation are shown in Table 4, where we report the MAE values 

across the out-of-sample period for each individual horizon 𝑘 and across all horizons. For the 

day-ahead horizon (𝑘 = 1), FullR/FullD constitutes the overall best model and exhibits a slightly 

lower MAE than FunArR/FunArD. Also, the purely autoregressive model ArR/ArD is not among 

the best models and is outperformed by the combined models. In addition, the ParFuM, i.e. the 

fundamental model without any postprocessing, does not constitute the worst performing model 
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and no superiority in forecasting performance of ParFuM-based models can be established. 

Beyond the day-ahead horizon, the results reported in Table 4 confirm what the analysis of the 

descriptive statistics has already suggested and show that the level of the forecast error increases 

with the forecast horizon for all models, which corresponds to the heightened uncertainty 

associated with forecasting further into the future. The best performing model per horizon is a 

model from the direct specifications (FullD, FunD or FunArD). Interestingly, ParFuM exhibits the 

highest MAE value for each horizon, but the best performing model is always a ParFuM-based 

model. Across all forecasting horizons, the FunArD model achieves the best average 

performance, outperforming the FunD model slightly. 

Table 4: Mean Absolute Error Values. Bold values indicate the best three models. Bold and underlined 
values highlight the best models with respect to the forecasting horizon. 

 Horizon 
Model 1 2 3 4 5 6 7 All 

ParFuM 5.16 7.40 7.95 8.17 8.28 8.45 8.10 7.64 
FunR 4.14 5.63 5.64 5.62 5.73 6.00 6.24 5.57 
ArR 4.27 5.39 5.78 6.01 6.09 6.13 6.21 5.70 
LoR 5.33 5.37 5.42 5.53 5.76 6.15 6.51 5.72 

FunArR 3.68 5.00 5.58 5.75 5.95 6.14 6.41 5.50 
ArLoR 3.99 4.94 5.36 5.57 5.84 6.09 6.56 5.48 

FunLoR 4.17 4.95 4.98 5.08 5.27 5.64 6.02 5.16 
FullR 3.58 4.62 5.10 5.30 5.54 5.79 6.27 5.17 
FunD 4.14 4.91 4.75 4.67 4.86 5.23 5.60 5.00 
ArD 4.27 5.48 5.81 6.02 6.08 6.21 6.24 5.98 
LoD 5.33 5.59 5.75 5.83 6.03 6.42 6.60 6.04 

FunArD 3.68 4.75 4.75 4.70 4.89 5.26 5.56 4.98 
ArLoD 3.99 4.89 5.36 5.60 5.78 6.22 6.35 5.70 
FunLoD 4.17 4.91 4.83 4.88 5.17 5.61 6.02 5.24 
FullD 3.58 4.55 4.74 4.90 5.16 5.64 5.98 5.16 

 

In order to identify drivers of forecast performance, the middle and lower panel of Figure 2 

present selected weekly average forecasts and weekly WMAE results, respectively. We compare 

ArR with ParFuM and FullD (best MAE for 𝑘 ∈ {1, 2, 3} and among the best MAE for 𝑘 ∈ {5, 7}) as 

well as FunArD (best MAE over all horizons). All considered models perform best in weeks with 

low observed volatility and most of the hourly prices close to the corresponding weekly average. 

These are weeks in which less than 15% of the prices are above or below the weekly average +/- 

weekly standard deviation or, statistically speaking, the best forecasting results are achieved in 

weeks with platykurtic prices. In 2016, weeks with this characteristic occurred predominantly in 

the period from mid-April to early September (exclusive of May, in which forecasting quality 

typically suffers due to three German public holidays). Thus, one of the best forecasted weeks 

among all models is 25th-31st July 2016, which behaved almost like the preceding week, with 

very little volatility around the mean price level and no extreme prices (not a single price lay 

beyond one standard deviation from the weekly mean). All models exhibit the highest errors in 

weeks with many extreme positive (during the third week of January) and/or negative prices (at 
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the end of the year). More concretely, the weeks with unexpected high prices, e.g. 18th-24th Jan 

2016, and very negative prices, e.g. 2nd-8th May 2016, and the three weeks at year end, e.g. 12th-

31st Dec 2016, are the weeks with the highest forecasting errors across all models. In these weeks, 

more than 48% of the prices lay beyond one standard deviation from the weekly mean. In more 

than 10% of the hours, the prices lay even beyond three standard deviations from the weekly 

average price. Except the pre-Christmas week, these mentioned weeks exhibit leptokurtic price 

patterns.10 

 

Figure 2: Hourly and weekly price structures and selected model performance for k=1. Green marked weeks indicate 
periods that can be predicted particularly well by all models and red marked weeks are particularly bad across all 
models. Yellow highlighted weeks show exemplary periods in which the fundamental model performs better than the 
ArR model and thus fundamental information significantly improves the forecasting accuracy of the hybrid model FullR. 

 
10 The highest negative price peak (-130.09 €/MWh) occurred during Mother’s Day on Sunday, 08th May 
2016. The tested forecasting models also exhibit high error measures in this extreme hour. 
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The hybrid models FunArD and FullR show the lowest WMAE values in Figure 2. In most weeks, 

the ParFuM is outperformed by the state-of-the-art model ArR. Nevertheless, considering 

fundamental information via a hybrid model always leads to an improvement in forecasting 

quality. This effect is particularly large in weeks in which the ParFuM performs better than the 

ArR model and can thus make a particularly large contribution to the prediction quality in the 

hybrid models (yellow areas in Figure 2). We see this improving effect mostly when price patterns 

change significantly from one week to the next and thus models containing fundamental 

information perform significantly better than autoregressive-based models. 

Figure 3 compares the hourly characteristics of the selected models for horizons 𝑘 = 1 and 𝑘 =

7. The mean forecasted prices of the ParFuM are comparatively less volatile over all hours of the 

day, which is in line with the lows being insufficiently low and the peaks insufficiently high. This 

effect becomes even stronger with increasing horizon. The models with autoregressive elements 

are clearly better at forecasting the typical daily shape and capture both peaks and dips 

significantly better. Over the day-ahead horizon, the FullR model outperforms the established 

ArR model by forecasting the typical daily shape more precisely. Thus, the early morning hours 

(1-6) and the evening peak hours (18-22) in particular are better captured by FullR. As the 

forecasting horizon increases, the FunArD model yields better results than the other models, 

especially for prices from the morning peak until late evening. 

Comparing the models in different weeks of the year, it can be seen that all models generally 

predict the typical daily structure and weekly profiles of the German spot market. However, the 

forecasts differ in the extent to which they capture these structures. The ParFuM identifies 

fundamental price changes and their directions but fails to capture the magnitude of changes 

related to diurnal (mostly load and PV) patterns, resulting in too few price spikes and thus too 

low volatility. The models containing AR components catch the peaks of the spikes much better 

and also capture negative price episodes more accurately. In a direct comparison of the ArR and 

the FullD model, we find that the ArR model tends to overrate swings and thus the forecasting 

quality suffers. In these hours, the FullD model performs better by taking fundamental relations 

into account. It can also be seen that although the ArR model achieves a fairly high standard 

deviation and a high daily price spread, this does not always lead to more accurate forecasting 

results, but rather simulates the general price behavior. Considering fundamental information can 

correct this effect and link forecasts with actual market conditions. 
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Figure 3: Hourly mean prices and MAEs for k=1 and k=7 

Our results indicate on the one hand that the inclusion of autoregressive components enables 

originally purely fundamental forecasting models to better forecast throughs and peaks as well as 

positive and negative extreme prices and thus to better capture volatility. On the other hand, the 

inclusion of fundamental components enables originally purely autoregressive forecasting 

models to detach themselves from trends and effects of the estimation history and to take short-

term systematic effects into account. The hybrid models can thus increase the forecasting quality 

for all considered horizons. The relative size of these effects on the MAE is above 10% in 

comparison to the ArR and above 30% in comparison to the ParFuM. The strongest improvements 

occur for horizons 𝑘 = 4 and 𝑘 = 5 (see Figure 4). 
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Figure 4: Relative MAE reduction of best forecasting model by horizon. The benchmark “best” models are chosen by 
MAE comparison. For 𝑘 = 1 to 𝑘 = 3 the best model is FullD, for 𝑘 = 4 to 𝑘 = 6 the best model is FunD and for 𝑘 = 7 
the best model is FunArD. 

 

4.3 Test results 

To validate the descriptive results, we apply the UEPA and CEPA tests introduced in Section 3.3. 

Figure 5 summarizes the test results. In each of the seven per-horizon panels, the left plot displays 

the p-value of the UEPA test against the p-value of the CEPA test. The red dashed lines indicate 

the five percent level of significance for each test and divide the plot into four quadrants. A point 

in the upper left quadrant indicates a pairwise model comparison, where in the UEPA test, the 

null hypothesis is rejected but the CEPA test does not reject the null hypothesis, whereas a point 

in upper right quadrant indicates that the null hypothesis of neither the UEPA nor the CEPA test 

is rejected. Recall that the former constitutes a counterintuitive result, although it may arise (e.g. 

Giacomini and White (2006)). Thus, the lower quadrants constitute the quadrants of primary 

interest, as they show pairwise comparisons where either both the UEPA and the CEPA null 

hypotheses are rejected (lower left quadrant) or where we can establish significant differences in 

forecasting performance conditional on renewable uncertainty (lower right quadrant). It should 

be noted that the markers for individual model pairs may overlap in the scatter plot. 

In each of the seven per-horizon panels, the right chessboard plot displays which model pairs 

fall into the lower left or lower right quadrant of the left plot, respectively. The squares represent 

the results of both pairwise tests of equal predictive ability. A white square indicates that no 

significant improvement in forecasting performance can be uncovered when using the model in 

the corresponding row instead of the model in the corresponding column. A dark green square 

indicates that the row model significantly outperforms the column model in the unconditional 

sense (UEPA test), whereas a light green square indicates that the row model only outperforms 

the column model in the conditional sense (CEPA test). Thus, in the latter case, renewable 

uncertainty can explain the relative forecasting performance and the indicator variable 𝐼𝑖𝑗,𝑘 is 

larger than 0.5. If, for a given model pair, both associated squares are white, we fail to establish 
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a difference in predictive ability both in the unconditional and the conditional sense. It should 

be noted that both tests are considered at the five per cent level of significance and that all p-

values have been corrected using the Bonferroni and Holm method. 

For the day-ahead horizon (𝑘 = 1), the results in Figure 5 confirm the preceding discussion based 

on Table 4. The overall best model FullR (and FullD) significantly outperforms all but the second-

best model FunArR (and FunArD), whereas the ParFuM is significantly outperformed by many 

but not all other models. Interestingly, one of the most extensively tested models of the short-

term EPF literature, i.e. ArR (and ArD), is significantly outperformed by the two best models, 

underscoring our preceding finding that the inclusion of a fundamental price signal helps 

forecasting performance. 

Figure 5: p-Values of Unconditional and Conditional Equal Predictive Ability Test. Note: The recursive and direct 
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specifications are identical for horizon 1 and thus the recursive and direct models are shown together in the 

corresponding chessboard plot (e.g., FunR/D represents FunR and FunD).  

For the two-day-ahead horizon (𝑘 = 2), the results in Figure 5 show that ParFuM is significantly 

outperformed by all other models, whereas the overall best model FullD significantly outperforms 

all but four models, all of which nest the ParFuM. The FullR model significantly outperforms all 

other recursive models but fails to achieve the same for the direct models. Yet, we do not find 

the direct specifications to generally predict better than their recursive counterpart based on the 

same information set. One can establish additional statistically relevant differences in forecasting 

performance conditional on renewable uncertainty. The FunD model fails to significantly 

outperform most models unconditionally but provides on average better forecasts conditional on 

renewable uncertainty, suggesting that a fundamental price signal helps forecasting performance 

in times of heightened uncertainty about renewable infeed. Similar although less pronounced 

results are established for the FunArD model. Interestingly, differences in forecasting performance 

are also uncovered for both the ArR and the ArD model, which suggests that such a time series 

model for electricity prices may be less suited for forecasting beyond the day-ahead horizon. It 

should be noted that the majority of observed outperformances are conditional for the ArR model, 

whereas they are unconditional for the ArD model. Thus, if the time series model is to be used 

beyond the day-ahead horizon, it should be considered in its recursive form. 

As the forecast horizon increases further, the ParFuM continues to be significantly outperformed 

by all other models. In addition, the forecasting performance of both full models (FullR and FullD) 

deteriorates significantly, whereas the forecasting performance of the two models with the lowest 

MAE across all horizons (FunArD and FunD) continues to improve. One can establish an 

increasing number of conditional differences in forecasting performance, which subsequently 

turn into statistically significant unconditional differences in forecasting performance. The 

number of conditional and unconditional outperformances of the ArR and the ArD model 

diminish as the forecasting horizon increases. Thus, the autoregressive models are not improving 

but they are continuously less bad than the remaining models, which exhibit deteriorations in 

forecasting performance of their own as the forecasting horizon increases. 
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Figure 6: p-Values of average Superior Predictive Ability Test 

The results of an evaluation of forecasting performance over multiple horizons jointly are 

presented in Figure 6. A square displays the p-value of a pairwise test of aSPA. White squares 

indicate that no significant improvement in forecasting performance can be uncovered when 

using the model in the corresponding row instead of the model in the corresponding column. A 

dark green square, however, indicates that the model in the row predicts significantly better on 

average across all horizons than the model in the column at the five per cent significance level.  

Figure 6 shows that ParFuM is again significantly outperformed by all other models, whereas the 

direct specifications based on ParFuM constitute the best models. Yet, only in two out of seven 

cases, the recursive model forecasts significantly worse than the respective direct model based 

on the same information set. The two autoregressive models (ArR and ArD) fail to significantly 

outperform any other model except ParFuM, suggesting that purely autoregressive models can be 

significantly improved for forecasting horizons greater than the day ahead. Thus, the results based 

on a joint evaluation across horizons confirm the preceding findings for the individual forecasting 

horizons. 

5 Conclusions 

This paper investigates electricity price forecasts for the short term. We do not only consider the 

widespread day-ahead forecasts, but cover horizons of up to a week ahead, well within the loose 

notion of short-term forecasting. We use well-established econometric models and a 

representative of fundamental models that are rather scarce in context of short-term EPF, as well 
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as their various combinations, so called hybrid models. We consider these models both as 

recursive and direct variants and examine and compare all model specifications for the individual 

forecasting horizons 𝑡 + 1 to 𝑡 + 7 as well as over this entire period using a case study of the 

German day-ahead market for the year 2016. Careful attention is paid to a realistic data setting 

and to use only data that was available at the historical hypothetical information cut-off time. At 

the same time, the models are constructed in a manner that they can also be executed in the 

short term and can thus be used in real applications in short-term trading. This is especially 

critical in the operation of fundamental models for the short term, as these often require a 

considerable database and exhibit long computation times as well as non-transparent price 

formation. We can overcome these difficulties by using ParFuM, which satisfies all requirements 

and at the same time generates fundamental prices of sufficient accuracy. 

The best models across the individual horizons and across all horizons jointly are hybrid model 

approaches. They incorporate the common autoregressive elements of state-of-the-art EPF models 

and pair them with the fundamental information of the ParFuM. The purely fundamental models 

are outperformed over all horizons by the autoregressive and hybrid models, thus confirming the 

well-documented difficulties of fundamental models with regard to the reproduction of extreme 

prices, price volatility and non-linear relationships. Although the forecasting errors of all models 

increase with forecasting horizon, our results show that the hybrid model approaches have the 

lowest errors and significantly outperform the other models. They combine the strengths of 

autoregressive models in terms of capturing daily - even non-linear - structures with the 

immediate reactions of fundamental models to short-term events or fundamental changes in the 

market. Our case study results show that the MAEs improve by at least 10% over the purely 

autoregressive model and by at least 30% over the purely fundamental model across all 

forecasting horizons by using the best hybrid model. 

Notwithstanding a very conscientious and detailed work, there is still room for improvement in 

our methodology: 

- An approach such as that discussed by Marcos et al. (2019b), among others, could also 

further improve the hybrid models developed. They suggest not only to consider the 

fundamental equilibrium price as a regressor, but also other fundamental variables. 

Although we could not find evidence for simple residual load models to exhibit good 

forecasting performance, the residual load is part of the best performing model for the 

horizons 𝑘 = 1 to 𝑘 = 3 (FullD) and thus significantly improves the forecasting accuracy. 

This effect could be enhanced or supplemented by including other fundamental variables. 

For the German market area, the availability of elementary base load power plants (e.g. 

nuclear and lignite) or the must-run CHP quantities would be particularly conceivable. 
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- In general, the choice of the fundamental model is important and could be further 

validated. Due to the simplified structure of ParFuM, the fundamental input data used is 

of particular importance. However, fundamental forecast data beyond the day-ahead 

horizon is hardly available publicly and therefore corresponding models have to be 

developed or purchased. Here, other published forecasting methods (most notably for 

load and rather difficult for cross-border flows) could be applied, developed, or acquired 

from other third parties. 

- Since the model quality of the ParFuM decreases rapidly beyond the day-ahead horizon, 

it would be interesting to investigate how sensitive the fundamental error is with regard 

to the input forecasts for load, CBCS and wind and PV for the longer horizons. Since an 

application of ParFuM is helpful despite its comparably high error values, the question 

arises at what point no exact forecast data but simple historical average values are 

sufficient as fundamental model inputs to integrate fundamental correlations in a hybrid 

model of longer horizons in a suitable way. This would entail considerable potential 

savings in terms of data preparation and input generation. 

- There is also room for improvement with respect to the incorporation of the fundamental 

prices, e.g. a time-varying coefficient for the fundamental price and/or a nonlinear 

transformation to achieve even better “postprocessing” in the sense of a better fit of 

fundamental prices to the actual prices. 

- Another possibility for improvements could be the extension of the considered lags for 

the models with autoregressive variables. 𝑡 − 1, 𝑡 − 2 and 𝑡 − 7 constitute the state-of-

the-art lags but for direct model configurations over longer horizons these reduce to one 

or two past prices in our setting, which constitutes rather little information. We consider 

only the aforementioned lags to ensure comparability across all models. 

- Since the individual model strengths of the specific configurations come into play at 

different points, one could consider a dynamic "super" model. This model could use a 

regime-switching approach to dynamically choose the proven strongest model for the 

considered period of the year, the hour of the day and the chosen forecasting horizon. 
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A1 Estimation and forecasting equations of recursive and direct models  
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