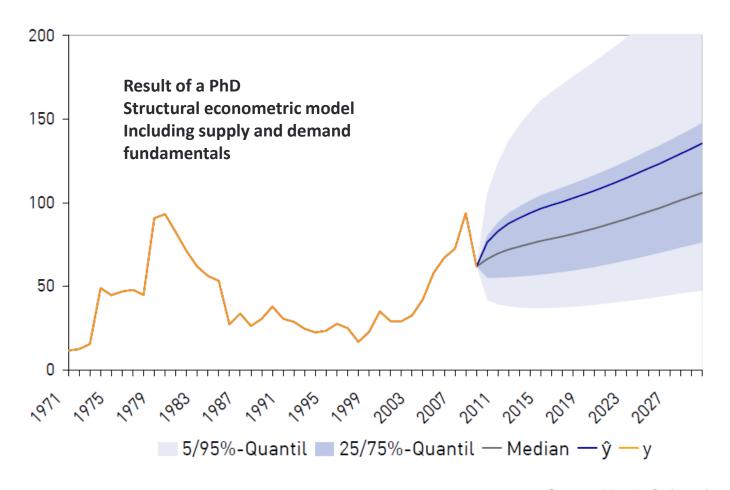


Uncertainties in the Power System: What methods for which challenges?

Prof. Christoph Weber Trans-Atlantic Infaday

FERC Washington, October 18, 2019

Partly based on work in the project: Gefördert durch:


UNIVERSITÄT
DUISBURG
ESSEN

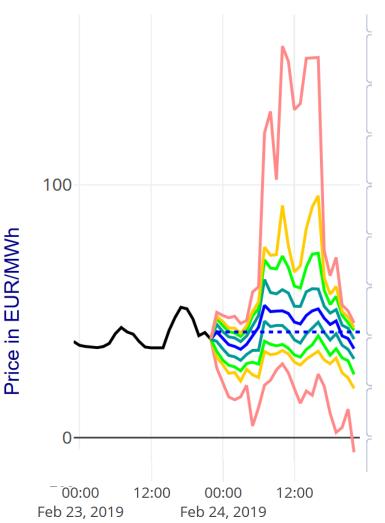
Offen im Denken

aufgrund eines Beschlusses des Deutschen Bundestages

Energy has been a risky business... Oil price forecast from 2009 onwards

Offen im Denken

Source: March, C. (2012)



10/24/2019

... and will remain so: Electricity price forecasts from Friday 23 onwards

Offen im Denken

Probabilistic forecasts available online on

https://www.uee.wiwi.unidue.de/forschung/prognose-vonstrompreisen/

- Short-term forecasts
- Huge uncertainties
 - ➤ Red: 1%/99% quantiles
 - ➤ Green: 25%/75% quantiles

Source: Florian Ziel (2019)

2

Structuring the issues at stake	1
Coping with uncertainties in operational decision-making	2
Coping with uncertainties in investment decision-support	3
Coping with uncertainties in decision support for policy makers	4
Final remarks	5

Dimensions of decisions under uncertainty

Offen im Denken

- What type of uncertainties is present?
 - Cf. next slide
- Who decides?
 - Individual vs. group
 - Policy makers vs. companies vs. households/citizens
- What is decided?
 - Operation
 - Investment
 - Regulation

Typology of energy decisions

What interdependencies with other decisions are relevant?

Normative Decision Theory: Decision settings

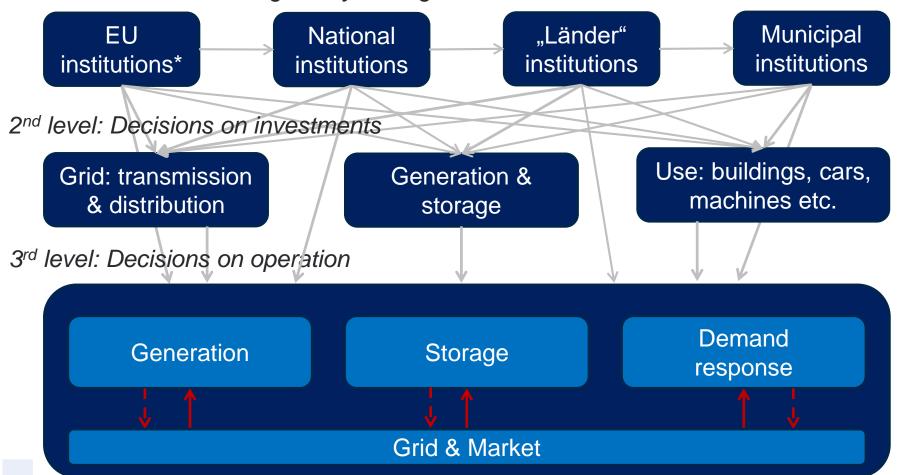
Offen im Denken

- Decisions under certainty
- Decisions under risk
 - Objective probabilities for events available
 - Optimal decision rule: Bernoulli Principle, Maximization of expected utility
- Decisions under incertitude

in the Anglo-Saxon literature frequently: "Knightian uncertainty"

No objective probabilities

- Typical case for political uncertainty
- Savage (1954) and others use subjective (Bayesian) probabilities
- > But also other, heuristic decision rules available: Maximin, minimum regret ...


Decisions under uncertainty

Decisions and decision makers in a national energy system perspective

Offen im Denken

1st level: Decisions on regulatory settings

^{*} government, parliament, administrations, courts

Structuring the issues at stake	1
Coping with uncertainties in operational decision-making	2
Coping with uncertainties in investment decision-support	3
Coping with uncertainties in decision support for policy makers	4
Final remarks	5

Characteristics of operational decisions

- Repeated decision making
- Varying circumstances, e.g.
 - Renewable infeed
 - Demand
 - Power plant & line availabilities
 - Fuel & CO₂ prices
- Considerable short-term uncertainty
 - Especially on first three factors
- Numerous situations rather standard
- But sometimes exceptional and critical situations occur

Examples of operational day-to-day decisions

Offen im Denken

Grid / System operators

- D-2: parameters for flow-based market coupling
- D-1: procurement of secondary and tertiary reserve
- D-1 & D: redispatch
- D: operation of phase shifters and topology changes
- D: activation of reserves

Power plant operators & portfolio marketers

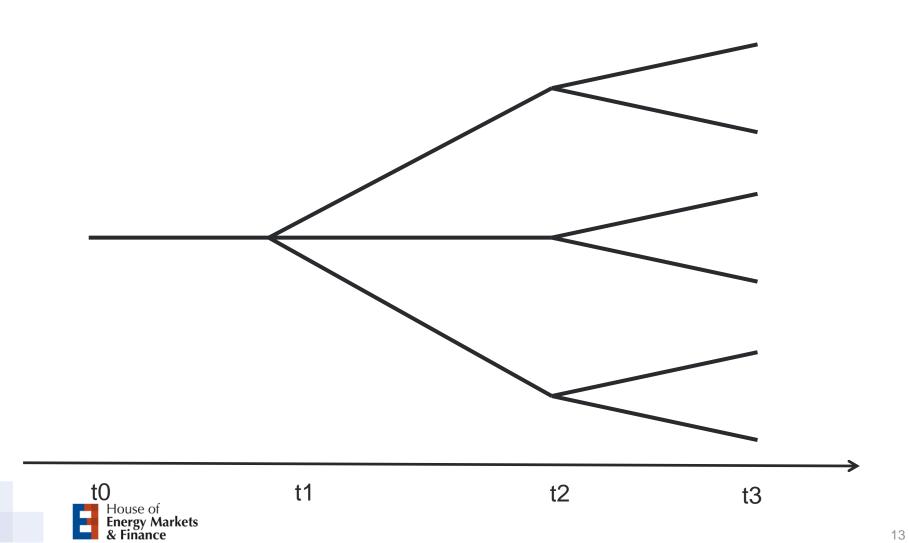
- D-1: submission of bids to secondary and tertiary reserve markets
- D-1: submission of bids to day-ahead trading (before DA auction)
- D-1: day-ahead planning of power plant, storage and DSM operation (after DA auction)
- D: submission of bids to intraday trading
- D: intraday planning of power plant, storage and DSM operation

Methods for dealing with uncertainties

- Linear and Mixed Integer Optimization using the deterministic equivalent
- Sensitivity calculations
- Stochastic optimization
- Chance-constrained optimization
- (Stochastic) (Dual) Dynamic Programming
- Robust optimization
- Distributionally robust optimization
- Heuristic approaches

Example Unit Commitment and Dispatch: Approaches for dealing with uncertainties

Offen im Denken


- Linear and Mixed Integer Optimization using the deterministic equivalent e.g. Sheble & Fahd (1994), Baldick (1995), Tovar-Ramirez (2016)
- Two-stage stochastic optimization
 e.g. Caroe et al. (1997), Dentcheva et al. (2000)
- Multi-stage stochastic optimization
 e.g. Carpentier et al. (1996), Takriti et al. (2000), Meibom et al. (2011)
- Stochastic Dynamic Programming
 e.g. Wolfgang et al. (2009), Felix, Weber (2012),
- Stochastic Dual Dynamic Programming
 e.g. Pereira and Pinto (1991), Guiges and Römisch (2012)
- Robust optimization
 e.g. Jiang et al. (2012), Bertsimas et al. (2013), Zhao et al. (2013)

cf. also reviews by Zheng et al. (2015), van Ackooij et al. (2018)

Tree as a representation of stochastic states

Stochastic Optimization: Stoch. Programming vs. Stoch. Dynamic Programming Offen im Denken

- Numerical Stochastic Optimization solves a deterministic equivalent of the original stochastic problem
- I.e. the branches and leafs of the tree are taken as given

Strategy 1:

Solve the entire problem at once \rightarrow Stochastic Programming

→ Only feasible for a limited number of branches and leaves

Strategy 2:

Decompose the problem using the Bellman Principle*

- → Stochastic Dynamic Programming
- → Only feasible if the number of decision states is limited e.g. option exercised yes/no, plant on/off

*loosely: each part of an optimal trajectory must be itself optimal

Challenges of stochastic programming 1) Multidimensional trees are really hard

Offen im Denken

Example:

1 stochastic factor, 2 stochastic stages, trinomial tree:

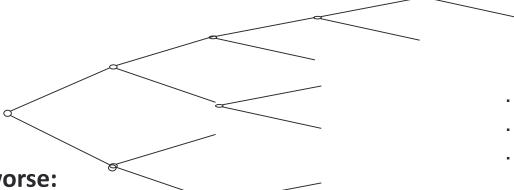
9 leafs

2 stochastic factor, 2 stochastic stages, trinomial tree:

81 leafs

Challenges of stochastic programming 2) Adequate determination of scenarios

- Scenario reduction techniques have been repeatedly developed
 e.g. Dupacova, Römisch (2003), Hoyland, Wallace (2001), Rubasheuski et al. (2014)
- Yet the metrics used to determine the scenarios are generally not reflecting the cost differences
- Importance (in terms of cost impact) based sampling of scenarios is preferable Cf. Pöstges & Weber (2018) for time aggregation



Why not just doing it stochastically?

Offen im Denken

Curse of dimensionality...

- ... and it is even worse:
 - Multiple stochastic factors
 Power prices, fuel prices, inflows, temperatures...
 - Multi-factor models for stochastic models
 e.g. seasonal factor, long-term factor...
 - Multiple decision states
 several power plants with up/down times, large storages...
 - ...
- → Making good stochastic models remains a challenge

Robust optimization

Offen im Denken

Stochastic Optimization:

- Minimization of Expected Cost or
- Minimization of a Risk functional of Cost (Mean-Risk optimization), e.g. CVaR
- Risk neutral or (mildly) risk averse approach

Robust Optimization:

- Minimization of the worst outcome
- Minimax-strategy
- Rather pessimistic approach
 - Not easily aligned with concepts of maximization of expected utility/welfare as favoured by mainstream economics
- Security constrained optimal power flow may be considered as an example of a robust optimization (N-1 criterion satisfied)
- Robustness always measured again a set of possible events (contingencies)
- "Milder" forms of robustness: local robustness, distributional robustness

Structuring the issues at stake	1
Coping with uncertainties in operational decision-making	2
Coping with uncertainties in investment decision-support	3
Coping with uncertainties in decision support for policy makers	4
Final remarks	5

What is different with investments?

- Discrete decisions
- Long-lasting impacts
- Heavy financial impact
- Empirical foundations for stochastic (or robust) optimization weaker
 - Less independent observations
 - Likelihood of structural breaks higher
 - > Extrapolation of probabilities from the past to the future more dangerous
- More recourse actions
 - Modelling has to anticipate the multitude of operating decisions during lifetime

Coping with uncertainties in investment decisions (I)

Offen im Denken

Strategy 1:

Use of **high discount rates** (or low payback times)

- & deterministic equivalent
- Implicit assumption: linear addition of uncertainty over time
- > According to CAPM: uncertainty related to (market) systematic risk

Strategy 2:

Use of **scenarios**

e.g. Shell or IEA scenarios

- \triangleright Reduction of multiple uncertainties to a limited number of scenarios (3 5)
- Focus on coherent and complementary world-views ("scenario family")
- In general no probabilities associated with scenarios

Coping with uncertainties in investment decisions (II)

Strategy 3:

Use of stochastic optimization with subjective probabilities

- > Or if probabilities based on statistical model: unknown model risk
- Agreement on subjective probabilities difficult to reach in multi-person decisionmaking context

Strategy 4:

Focus on mean scenario + risk assessment

- Standard approach in corporate reporting
- Risks are frequently not quantified

Analysis

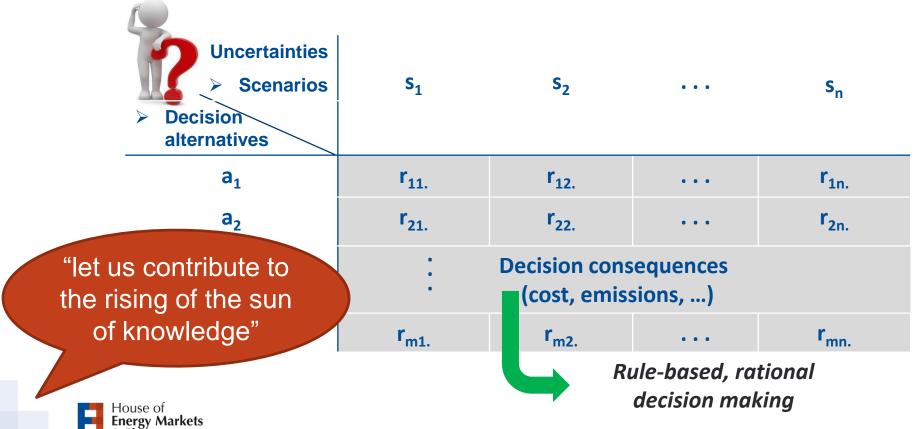
Or rather a key question:

Why are we developing and using scenarios?

Simple answer:

To inform decision makers and to enlighten decisions

But...


Answer - Version 1: an idealistic concept of enlightenment

Offen im Denken

Analysis

- Scenarios enable good decision making under uncertainty
- They structure the multiple uncertainties that decision makers are facing
- Underlying decision model: (as taught in 1st year business administration course)

Answer – Version 2: a partisan concept of enlightenment

UNIVERSITÄT
DUISBURG
ESSEN

Offen im Denken

Analysis

Scenarios help to make the right decisions

Scenarios show pathways to achieve objectives

Underlying decision model:

decision making in political arenas multi-level stakeholder interactions

A few further remarks on scenarios

Offen im Denken

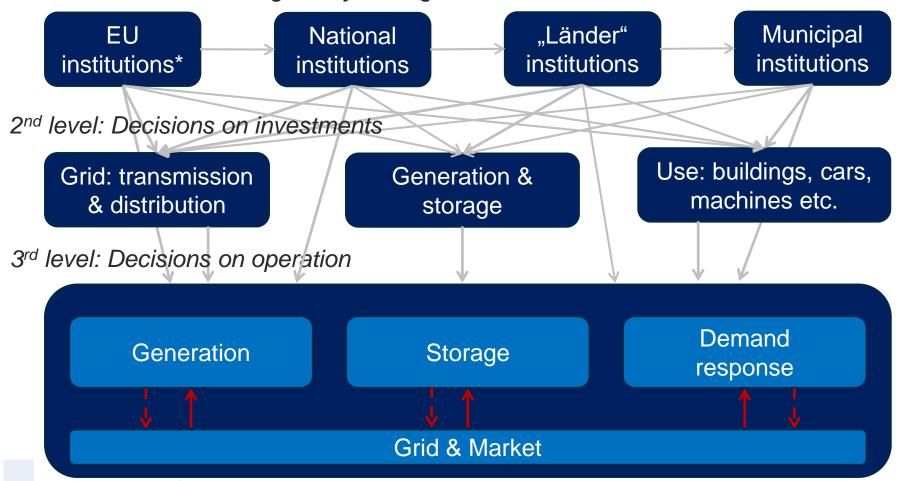
If scenarios are focusing on depiction of uncertainties:

- They should capture key uncertainties exogenous to the decision maker
 E.g.
 - World market prices for fossil fuels and renewable technologies
 - Global & European Climate Policy objectives and instruments
 - if the decision maker is a company or a national government
- The same decisions should be evaluated against different scenarios Key questions:
 - Which decision yields the best outcome "on average"?
 - Is there a scenario where a decision leads to extremely negative consequences?
 - > A not (fully) formal way of implementing a **mean-risk perspective** on decisions
- ➤ The process of scenario construction and parameter selection is as important as the scenarios itself
 - Avoidance of "group think" key for appropriate dealing with risk

Structuring the issues at stake	1
Coping with uncertainties in operational decision-making	2
Coping with uncertainties in investment decision-support	3
Coping with uncertainties in decision support for policy makers	4
Final remarks	5

What is different in political decision making?

- Multiple objectives
- Multiple stakeholders
- Advocating the own cause important
- Evoking the uncertainties may frequently be perceived as "not helpful" for the own cause
 - Scenarios rather used as arguments to convince than as tools to inform (cf. above "partisan concept of enlightment")
- Cause-effect relationships for many policy instruments uncertain
 - Not (as much) true for command & control type policies, e. g. schedule for coal phase out
 - But certainly true for price-based instruments and support mechanisms, e.g.
 CO₂ tax
 subsidies for electric vehicles or renewables
- Multi-level decision hierarchy



Decisions and decision makers in a national energy system perspective

Offen im Denken

1st level: Decisions on regulatory settings

House of Energy Markets

^{*} government, parliament, administrations, courts

Dealing with uncertainties in political decision support (I)

Offen im Denken

Use scenarios

Reflecting also truthfully exogenous uncertainties, e.g. technology cost

Make sensitivity analyses

- Notably on uncertain behavioural assumptions
 e.g. on uptake of flexibility provision through V2G for electric vehicles,
 on restrictions on land use for renewables due to limited acceptance
- But also on technological assumptions
 e.g. cost of PV vs. wind
- Scenarios: many parameters are varied simultaneously
 - > Enable an assessment of choices against contrasting world views
- Sensitivities: one parameter is varied at a time
 - ➤ Enable a transparent assessment of the impact of single parameter choices on results

Dealing with uncertainties in political decision support (II)

- Take into account behavioural heterogeneity among stakeholders:
 - Energy users, investors, governments

- Take existing empirical evidence serious
- Model behavioural uncertainty through parameter variations
- Conduct further empirical studies on key behaviours of stakeholders (investors and users)
 - E.g. choice of (electric) car
 - ➤ Investment in heat-pumps

Dealing with uncertainties in political decision support (III)

Offen im Denken

Do not rely excessively on results from linear programs

Explicit assumptions:

- one overarching, unique objective function
- homogenous technology classes with known parameters
- False certainty
- Penny-switching
- Control illusion
- ... or at least do sensitivity analyses
- Investigate operational risks induced by policy instruments in detail
 - Security of supply key challenge for energy transition
 - Modelling of operational uncertainties can build on established stochastic methods

Structuring the issues at stake	1
Coping with uncertainties in operational decision-making	2
Coping with uncertainties in investment decision-support	3
Coping with uncertainties in decision support for policy makers	4
Final remarks	5

- There is no silver bullet to cope with uncertainties
 - But to make the world a better place we have to take them seriously
- A major step is already taken when uncertainties/risks are thoroughly identified
- When you use an optimization model, adjust your shot well to hit your target:
 - i.e. reflect carefully your choice of method and your representation of uncertainties (distribution)
- All models are false... but only the fool will not acknowledge

Future Directions for Research

There are many...

But if the focus is on contributing to sustainable energy transitions around the globe:

- Particular attention has to be paid to longer-term decisions regarding investments and political/regulatory frameworks.
- The preceeding reflections lead me to suggest the following routes to explore:
 - Empirical research on how people adjust their purchases of long-living consumer goods (cars, heating systems) in response to policies – and its embedding in long-term optimization / equilibrium models by including heterogenous agents
 - Development of advanced but communicable methods for mean-risk analyses when probabilities are at best guess-estimates
 - Investigations on improved interaction processes between modellers and decision makers to support rational choices in multi-stakeholder environments

Offen im Denken

Thank you for listening.

Questions?

References

- Baldick, R. (1995): The generalized unit commitment problem. IEEE Trans. Power Syst. 10(1):465–475.
- Bertsimas, D., E. Litvinov, X. Sun, J. Zhao, T. Zheng (2013): Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 28(1):52–63.
- Carøe, C. C., A. Ruszczyński, and R. Schultz (1997): Unit Commitment Under Uncertainty Via Two-Stage Stochastic Programming. Dept. Comput. Sci., Univ. Copenhagen, Copenhagen, Denmark, Tech. Rep. DIKU-TR-97/23.
- Carpentier, P., G. Gohen, J.-C. Culioli, and A. Renaud (1996): Stochastic optimization of unit commitment: A new decomposition framework. In: IEEE Trans. Power Syst. 11(2):1067–1073.
- Dentcheva, D., W. Römisch (1998): Optimal power generation under uncertainty via stochastic programming. In: K. Marti and P. Kall, Eds.: Stochastic Programming Methods and Technical Applications. Berlin, Germany, 22–56.
- Felix, B., Weber, C. (2012): Gas storage valuation applying numerically constructed recombining trees. In: European Journal of Operational Research 216(1):178-187.
- Guigues, V., W. Römisch (2012): SDDP for multistage stochastic linear programs based on spectral risk measures. Oper. Res. Lett. 40(5): 313-318
- Jiang, R., J. Wang, M. Zhang, Y. Guan (2013):Two-stage minimax regret robust unit commitment. IEEE Trans. Power Syst. 28(3):2271–2282
- Meibom, P.; Barth, R.; Hasche, B.; Brand, H.; Weber, C.; O'Malley, M. (2011): Stochastic Optimization Model to Study the Operational Impacts of High Wind Penetrations in Ireland. In: IEEE Transactions on Power Systems 26(3):1367-1379

References

- Pereira, M.V.F., L.M.V.G Pinto (1991): Multi-stage stochastic optimization applied to energy planning. Mathematical Programming, 52:359–375.
- Rubasheuski, U., J. Oppen, D. L. Woodruff (2014): Multi-stage scenario generation by the combined moment matching and scenario reduction method. Operations Research Letters, 42(5):374-377.
- Sheble, G. B., G. Fahd (1994): Unit commitment literature synopsis. IEEE Trans. Power Syst. 9(1):128–135.
- Takriti, S., B. Krasenbrink, and L. S.-Y. Wu: Incorporating fuel constraints and electricity spot prices into the stochastic unit commitment problem. In: Oper. Res. 48(2):268–280.
- Tovar-Ramírez, C. A., A. Martínez-Mares, C. R. Fuerte-Esquivel (2016): Short-term unit commitment for integrated natural gas and electricity infrastructures. In: 2016 IEEE PES Transmission & Distribution Conference and Exposition-Latin America (PES T&D-LA), Morelia.
- van Ackooij, W., Danti Lopez, I., Frangioni, A. et al. (2018): Large-scale unit commitment under uncertainty: an updated literature survey. Ann Oper Res 271:11-85
- Wolfgang, O., A. Haugstad, B. Mo, A. Gjelsvik, I. Wangensteen, G. Doorman (2009): Hydro Reservoir Handling in Norway before and after Deregulation. Energy 34(10):1642–1651.
- Zhao, C., J. Wang, J.-P. Watson, Y. Guan (2013): Multi-stage robust unit commitment considering wind and demand response uncertainties. IEEE Trans. Power Syst. 28(3):2708–2717.

