

Identifying key elements for adequate simplifications of investment choices – The case of wind energy expansion

Arne Pöstges Essen, April 3rd 2020 Supported by:

*

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

UNIVERSITÄT DUISBURG ESSEN

Which key elements most strongly influence investment decisions?

Open-Minded

Motivation & Agenda

- A social planner seeks to identify possible and profitable sites and turbine technologies to invest in under a given economical and technological setting.
- A modeler aims to support the social planner. She therefore aims to accurately model wind energy expansion under given constraints while using limited computational and time resources.
- > Leads to the challenge of minimizing the error of aggregation in electricity market modeling
 - I. Definition of value components
 - II. Computation of value components
 - 1. Choice of adequate scenarios
 - 2. Define investment choices as objects for the clustering algorithm
 - 3. Calculate value components for various scenarios
 - III. Aggregation of investment choices in limited number of clusters
 - 4. Predefine cluster numbers using hierarchical clustering
 - 5. Aggregation of investment choices

The value of an investment choice

- Key parameter in decision-making process
- Considers multiple spatial and technological factors
- Sum of the contribution margin over time subtracted by the investment cost
- Interpreted as site (area) and unit (technology) specific excess profit per installed capacity

$$NPV_{a,i} = \sum_{t} e^{-rt} \theta_{t,a,i} K_{a,i} p_{t,a} - c_i K_{a,i}$$

Per-unit consideration:
$$Value_{a,i} = \sum_{t} e^{-rt} \theta_{t,a,i} p_t - c_i$$

e^{-rt}	discounting factor			
$\theta_{t,a,i}$	capacity factor			
K _{a,i}	capacity			
p_t	electricity price			
Ci	investment cost			

UNIVERSITÄT

D_U_I_S_B_U R G

t	time	
а	area	
i	technology	

Decomposition of the value of an investment choice

UNIVERSITÄT DUISBURG ESSEN

Definition of value components

- Yield specific value component
 - driven by the **site-specific full load hours** (at average technology mix)
- Resource specific value component
 - driven by the market value factor of wind
 - self destructive effect of high RE shares
- Site specific value component (spatial heterogeneity)
 - driven by **wind profile** of the selected site
 - site vs. overall averaged profile per time
- Technology specific value component
 - driven by the **selected turbine type**
 - individual vs. portfolio averaged profile
- Grid specific value component
 - considering the **network load** and resulting nodal price differences.

House of Energy Markets & Finance For further analysis summed up as – **"net yield"** component

Exemplary value components (VC) for a future portfolio

Definition of value components

- VC based on the result of an optimized future scenario
- Four investment choices (IC) as combinations of site and technology
 - sites: DE132 → South Germany
 DEF02 → North Germany
 - technologies: Turbine 2 → Onshore low speed
 Turbine 8 → Onshore high speed
- Net yield component positive in the north, negative in the south, reflective of FLH independent from technology
- Positive effect of the site component even at the exemplary southern site
- Highest variation in the technology component
 - Onshore high speed turbine is not beneficial at the Northern site
 - the additional revenues do not compensate the additional costs compared to the average portfolio (cf. also next slide)

UNIVERSITÄT

DUISBURG

Exemplary value components (VC) for a future portfolio

Definition of value components

- VC based on the result of an optimized future scenario
- Four investment choices (IC) as combinations of site and technology
 - sites: DE132 → South Germany
 DEF02 → North Germany
 - technologies: Turbine 2 → Onshore low speed
 Turbine 8 → Onshore high speed
- Net yield component positive in the north, negative in the south, reflective of FLH independent from technology
- Positive effect of the site component even at the exemplary southern site
- Highest variation in the technology component
 - Onshore high speed turbine is not beneficial at the Northern site
 - the additional revenues do not compensate the additional costs average portfolio (cf. also next slide)

House of Energy Markets & Finance

with the highest profit is built up to the

site capacity limit

UNIVERSITÄT

DUISBURG

Exemplary analysis of the technology component

DUISBURG ESSEN

UNIVERSITÄT

Definition of value components

- VC based 2017 scenario
- Investment choice South (DE132) / WEA 2

$$VC_{a,i}^{technology} = \sum_{t} \left(\theta_{t,a,i} - \bar{\theta}_{t,a,\cdot} \right) p_t - (c_i - c_{\cdot})$$
Difference in capacity
factors
Cost
difference

- Cumulated yearly
 - revenue 33,191.00 €
 - cost difference 39,806.00 €
 - technology component -6,615.00 €

Exemplary analysis of the technology component

DUISBURG ESSEN

UNIVERSITÄT

Definition of value components

Finance

The case of wind energy in Germany

UNIVERSITÄT DUISBURG ESSEN

1. Choice of adequate scenarios

The case of wind energy in Germany

- Scenario A or "2017"
 - real capacities of wind power 2017
 - historical day-ahead spot prices
- Scenario B or "2020 nodal"
 - ensure the consideration of congestion effects
 - scaled capacities of 2017
 - approximated prices for 2020 adopted from Felling and Weber (2018)
- Scenario C or "future"
 - result of a simplified electricity market model optimization
 - greenfield approach with one conventional backup technology and three renewable sources
 - low-emission scenario with a renewable share of about 65 %
 - demand held constant from 2017

UNIVERSITÄT

DUISBURG

2. Define investment choices

The case of wind energy in Germany

- Combination of site and technology type:
 - spatial resolution: 402 NUTS3 regions in Germany
 - level of technological detail: 8 wind turbines representing the variety of wind turbines in Germany
- 402 sites and 8 technology types lead to an overall of 3216 investment choices (cluster objects)

UNIVERSITÄT

D_U_I_S_B_U R G

Turbine Type	Hub height [m]	Rotor Diameter [m]	Power [kW]	Туре	Capex [€/kW]
WEA 1	72	53	800	High speed	1.047
WEA 2	139	121	2.530	Low speed	1.571
WEA 3	109	92	2.350	High speed	1.155
WEA 4	142	114	3.170	Low speed	1.290
WEA 5	110	109	3.000	Low speed	1.169
WEA 6	150	140	4.000	Low speed	1.573
WEA 7	120	124	4.500	High speed	1.363
WEA 8	120	140	6.000	High speed	1.483

3. Calculate value components for three scenarios **Open-**Minded The case of wind energy in Germany Shown results: 50 most profitable investment choices $_{5\Gamma}^{\times 10^4}$ Scenario 2017 (ICs) of each scenario in descending order Value [€/MW] technology site **Observations:** net-yield Profit - Number of ICs with positive profit: 15 - 1 - 245 Investment Choice - Number of ICs with a strictly positive realized capacity: Scenario 2020 nodal $\times 10^4$ 991 - 927 - 52Value [€/MW] technology site Strong changes in profitable investment choices and in grid net-vield capacities greater zero between 2017/2020 nodal and Profit future **Investment Choice** \rightarrow fundamental difference prices and capacities Scenario future - reduction in overall profitability from 2017 to 2020 Value [€/MW] technology nodal net-vield \rightarrow price influence of grid congestion Profit – high profitability in future **Investment Choice** \rightarrow positive contributions of the net-yield component

UNIVERSITÄT

DUISBURG

Energy Markets

—

4./5. Cluster analysis

- Using:
 - k-means clustering
 - predefined number of clusters using hierarchical clustering
 - squared Euclidean Distance
- Done for:
 - 402 sites (NUTS3 regions)
 - 8 technologies
 - ➢ 3216 investment choices
- Based on:
 - 4 to 5 value components in
 - 3 scenarios \rightarrow indicating that aggregation of decision alternatives is robust under different scenario settings

UNIVERSITÄT

- ➤ 13 attributes
- ➤ 11 clusters

Aggregation of investment choices

The case of wind energy in Germany

- Two key aspects of interest
 - the geographical and technological diversification within the clusters
 - general characteristics of cluster specific value components

UNIVERSITÄT

Geographical diversification

The case of wind energy in Germany - Aggregation of investment choices

- Separation in two types of clusters
 - small, generally profitable clusters
 - large less profitable clusters
- Most profitable centroids (black) in North Germany or at mountain sites
- No obvious split between East and West clusters
 - spatial heterogeneity in that dimension not too important

UNIVERSITÄT

DUISBURG

Technological diversification

The case of wind energy in Germany - Aggregation of investment choices

- Turbine type is similarly distributed for the four most profitable clusters
- Clusters five and ten are quite specialized on high speed wind turbines

UNIVERSITÄT

DUISBURG

Obtained clusters: Profitability across scenarios

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Evaltuation of cluster statistics

- Similar ranking of clusters in all scenarios
- Indication of limited changes in relative market value

House of Energy Markets & Finance

Obtained clusters: The four value components in comparison

Open-Minded

UNIVERSITÄT

Evaltuation of cluster statistics

- Technology and net-yield component
 - in absolute terms the highest
 - considerable divergences between clusters
- Net-yield component
 - Most important driver for the overall profit
- Site component
 - smallest influence
 - lower variability
- Grid component
 - negative due to scarce transfer capacities in times of high renewable infeed

9

8

10 11

2 3

5 6

Cluster ID

4

2 3

5 6

Cluster ID

4

10 11

8 9

Conclusion and further research

- ✓ Methodology enables robust clustering of investment choices in view of use in aggregate models
- ✓ Net-yield component is a key influencing factor for cluster formation
- ✓ Diversity in sites does not impact clustering as much
- The profitability ranking of the obtained centroids is rather robust against changes in portfolio mix and price
- Test robustness of clusters against further scenarios (e.g. varying carbon caps or solar penetration)
 Test of developed aggregation in an optimization environment

Thank you for your attention!

Arne Pöstges, M. Sc.

Chair for Management Science and Energy Economics House of Energy Markets & Finance University of Duisburg-Essen

arne.poestges@uni-due.de +49 (0) 201 183-6862

