

Using Open Access Power Plant Data for Stochastic Availability Modelling

Maike Spilger, Christoph Weber GOR 2022 Karlsruhe, 07.09.22

Offen im Denken

Uncertainty regarding available generation capacities increases and becomes more relevant:

- Reduction in installed conventional power plant capacities (coal phase out, nuclear phase out)
- Expected increase in demand (electrification of heating and transport) and its increasing weather dependence
- Less dispatchable generation capacities

Assessment of the quality of power plant outage data of the ENTSO-E Transparency Platform

Highlight key descriptive statistics and data inconsistencies

Development of a **non-homogenous semi-Markov model** to simulate the availability of generation capacities

- Considering seasonal, technology and regional effects
- Empirical parameterization

Background and research approach

Modeling of generation availability

Capacity availability distribution

- Stochastic distribution of system availability derived by recursive convolution of (time-dependent) unavailability probabilities of individual power plants
 - Bucksteeg (2019), Nolting et al. (2020)

Markov models

- Temporal dependency modeled considering stochastic and deterministic effects. Mostly used for forced outages
 - Pievatolo et al. (2004), Billinton and Li (2007), van Casteren et al. (2000)

Deterministic approaches for planned availability

- Periodic maintenance intervals optimized without consideration of stochastic effects.
 - Guerrero-Mestre et al. (2020),

Empirical models for generation adequacy assessment Gils et al. (2018)

- **Focus**: Stochastic hourly power plant availability for security of supply assessment based on historical data
- Method: Mean-reversion Jump-diffusion model
- Data: German data for 2013 & 2014 from EEX transparency platform
- **Highlights**: Simulations reflect statistical behavior of limited available data

Guerrero-Mestre et al. (2020)

- **Focus**: Uncertainty of conventional generation availability for large-scale generation adequacy assessment based on publicly available data
- Method: Homogenous Markov model
- Data: ENTSO-E Transparency Platform 2015 2017; World Energy Council (2010)
- **Highlights:** Data gaps and inconsistencies affect analysis

Research gap

- Simulate forced & planned unavailabilities unit-wise using Markov model
- Use large, publicly available data set for model parametrization

Power plant outages from 2018 to 2021 processed to available generation per country (source: ENTSO-E Transparency Platform)

 Planned and forced availability differs in seasonal effects, duration and frequency. All depending on power plant specific characteristics

semi-Markov Model – The general form

DUISBURG ESSEN Offen im Denken

UNIVERSITÄT

Model the availability of a power plant with the semi-Markov process $Av_{t,u}$ given by

- system states *S* with state space $\mathcal{M} = \{1,2,3\}$, where $S_n \neq S_{n-1}$
- jump times J_n , $n \in [0, T]$, where $0 = J_0 < J_1 < \cdots < J_n \cdots < J_T$
- holding times $\tau = J_n J_{n-1}$

such that $Av_{t,u} = \begin{cases} 0 & if S_n \in \{2,3\} \\ 1 & otherwise \end{cases}$ for $t \in [J_n, J_{n+1}]$

State transitions are defined by

- cumulative distribution

 $F_{ij}(\tau) = \mathbb{P}[J_{n+1} - J_n \le \tau | S_n = i, S_{n+1} = j]$

- transition probability matrix **P** with elements

$$\boldsymbol{p}_{ij} = \mathbb{P}[S_{n+1} = j \mid S_n = i]$$

for $i \neq j$ and $i, j \in \mathcal{M}, t \in [0, T]$

semi-Markov Model – Holding time distribution

Duration of unavailability in hours

 Example here for German fossil gas power plants

> House of Energy Markets

& Finance

 Duration of planned outages increases during summer Quantile regression function for holding time distribution

UNIVERSITÄT

D U I S B U R G E S S E N

Offen im Denken

$$f_q(X_{t,u}, \beta_q) = \exp(\beta_{0,q} + \beta_{5,q}T_u + \sum_{i=1}^{11} \beta_{9+i,q}\mathcal{M}_t$$

$$(ype of outage)$$

$$periodical seasonal effects$$

$$+ \sum_{i=1}^{4} \beta_{20+i,q}\mathcal{R}_u + \sum_{i=1}^{4} \beta_{24+i,q}C_u + \sum_{i=1}^{4} \beta_{28+i,q}PT_u)$$
effects of power plants characteristics

Dummies for \mathcal{R}_u country of origin \mathcal{T}_u type of unavailability \mathcal{C}_u installed capacity \mathcal{M}_t month-of-the-year PT_u technology

9/8/2022

Probability of transition from state *available* to *planned unavailable* based on the **M**ean **T**ime **t**o **R**epair in month *m* and region *r*

Following Barbu and Limnios (2009), we assume

no transitions to same state

Energy Markets

 no transitions between states forced unavailable and planned unavailable

Transition probabilities reflect seasonal effects

 Planned long (& rare) unavailabilities mostly before resp. after winter resulting in high transition probability to planned unavailability in these months

$$p_{1,3}^{m,r} = \frac{MTtR_{1,3}^{m,r}}{MTtR_{1,3}^{m,r} + MTtR_{1,2}^{m,r}}$$

Probability of transition to planned unavailability

UNIVERSITÄT

DUISBURG ESSEN

Offen im Denken

9/8/2022

Data set – Overview and descriptive statistics

UNIVERSITÄT DUISBURG ESSEN Offen im Denken

- 13,322 observations of ENTSO-E transparency platform from 2018 to 2021
- Processed for inconsistencies and outliers
- Figure for German fossil gas power plant

Type Region		Outages per region	Units per region	Outage Rate
Forced	FR	1.041	22	3,9%
	IT	1.622	89	5,6%
	DE	1.180	52	4,3%
	СНАТ	230	16	2,9%
	BeNe	1.168	59	3,3%
Planned	FR	743	21	12,4%
	IT	1.648	89	8,0%
	DE	3.561	57	21,0%
	CHAT	175	15	12,2%
	BeNe	2.169	66	11,7%

Table: Key statistics for fossil gas power plants

Results – Simulations of generation availability

& Finance

DEUSSEN RG Offen im Denken Simulation of power plant availability $Av_{t,u}$ based on

UNIVERSITÄT

 $(F_{t,u}, P^{m,r})$

Empirical analysis of characteristics of power plant outages based on ENTSO-E dataset

- Outages depend on deterministic power plant characteristics such as installed capacity, country
 of origin, technology group
- Mixture of long but rare high-impact outages and short but frequent low-impact outages
- Impact of partial outages neglectable based on outage intensity
- Planned unavailability with clear seasonal effects

Simulations of power plant availability using semi-Markov model

- Non-homogeneous parametrization to model seasonal effects
- Unit-wise trajectories of availability reflecting power plant characteristics

Thank you for your attention!

Maike Spilger maike.spilger@uni-due.de www.ewl.wiwi.uni-due.de

- Barbu, V. S., & Limnios, N. (2009). Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis (Vol. 191). Springer Science & Business Media
- Billinton, Roy; Li, Yifeng (2007): Incorporating multi-state unit models in composite system adequacy assessment. In: *Euro. Trans. Electr. Power 17 (4)*, S. 375-386. DOI: 10.1002/etep.154.
- Bucksteeg, M. (2019). Modelling the impact of geographical diversification of wind turbines on the required firm capacity in Germany. *Applied Energy*, 235, 1476-1491.
- Gils, H. C., Bothor, S., Genoese, M., & Cao, K. K. (2018). Future security of power supply in Germany—The role of stochastic power plant outages and intermittent generation. *International Journal of Energy Research*, 42(5), 1894-1913.
- Guerrero-Mestre, V., Poncela, M., Fulli, G., & Contreras, J. (2020). A probabilistic analysis of power generation adequacy towards a climate-neutral Europe. *Energy Reports*, *6*, 3316-3333.
- Nolting, L., Spiegel, T., Reich, M., Adam, M., & Praktiknjo, A. (2020). Can energy system modeling benefit from artificial neural networks? Application of two-stage metamodels to reduce computation of security of supply assessments. *Computers & Industrial Engineering*, 142, 106334.
- Pievatolo, A.; Tironi, E.; Valade, I. (2004): Semi-Markov Processes for Power System Reliability Assessment With Application to Uninterruptible Power Supply. In: *IEEE Trans. Power Syst.* 19 (3), S. 1326–1333. DOI: 10.1109/TPWRS.2004.826756.
- van Casteren, J.F.L.; Bollen, M.H.J.; Schmieg, M. E. (2000): Reliability assessment in electrical power systems: the Weibull-Markov stochastic model. In: *IEEE Trans. on Ind. Applicat.* 36 (3), S. 911–915. DOI: 10.1109/28.845070.

