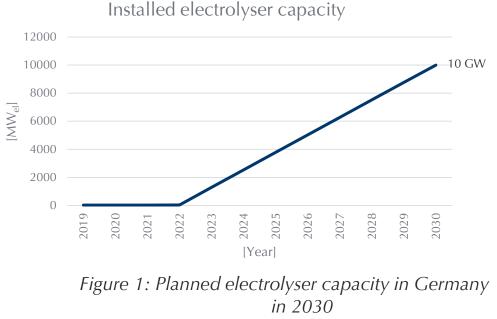


MODEZEEN H₂-Workshop Model analysis – Focusing on the impact of market splitting on power-to-hydrogen

Marco Sebastian Breder, Michael Bucksteeg, Felix Meurer 07.04.2022, Digital H2-Workshop

UNIVERSITÄT DUISBURG ESSEN


Open-Minded

Agenda	UNIVERSITÄT DUISBURG ESSEN
0	Offen im Denken
Motivation	1
Methodology and Data	2
Results and Discussion	3
Conclusion	4

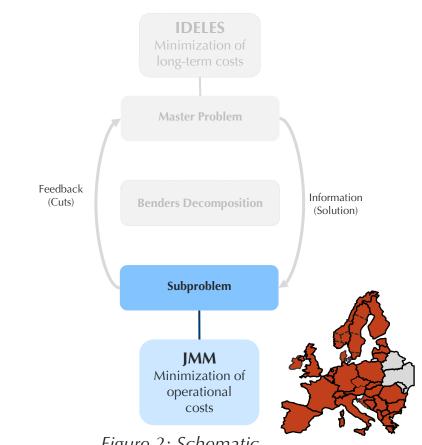
Motivation

- Energy transition in Germany
 - Renewable expansion induces flexibility requirements
 - Regional differences in generation and demand lead to grid bottlenecks from north to south Germany
- Market integration
 - Growing importance of Power-to-Hydrogen (PtH₂)¹
- Main contribution
 - Analysis of the integration of PtH₂ into zonal electricity markets by use of a decomposed optimization model covering endogenous investment decisions ²
 - Analysis of incentives through CO₂ pricing and market splitting

Source: Bundesregierung (2021)

PtG comprises the conversion of electrical power to hydrogen (PtH2) by electrolysis and to methane (PtM) when further combining it with CO₂
 Leisen, R.; Böcker, B. and Weber, C.: Optimal capacity adjustments in electricity market models – an iterative approach based on operational margins and the relevant supply stack, Mimeo, 2022; Bucksteeg, M.; Mikurda, J. and Weber, C.: Integration of power-to-gas into electricity markets during the ramp-up phase – Assessing the role of carbon pricing, Working Paper, <a href="http://htt

3



Motivation	1
Methodology and Data	2
Results and Discussion	3
Conclusion	4

Methodology

- Joint market model (JMM)
 - Linear problem with hourly resolution
 - System cost minimization
 - Decision variable: dispatch
 - Modelling of Day-ahead electricity markets, balancing markets and heat markets
- IDELES: Benders Decomposition for Des-/Investment Decision (work in progress)
 - General Approach
 - Iterative adjustment of capacities
 - Based on the subgradient method of optimization
 - Two-level problem

UNIVERSITÄT

DUISBURG ESSEN

Offen im Denken

Figure 2: Schematic representation of the Benders decomposition method

House of Energy Markets & Finance

Leisen, R.; Böcker, B. and Weber, C.: Optimal capacity adjustments in electricity market models – an iterative approach based on operational margins and the relevant supply stack, Mimeo, 2022

Utilization of Power-to-Hydrogen in electricity markets

Offen im Denken

General considerations

- Calculus of the dispatch decision
 - Definition of the value of the converted gas, i.e. use value
 - Utilization of the electrolyser when electricity price is lower than (or equal to) the use value
- No exogeneous H₂-Demand necessary
 - Advantage: Endogenous decision of production based on market incentives
- General effects of market split and CO₂-Pricing on PtH₂-utilization:

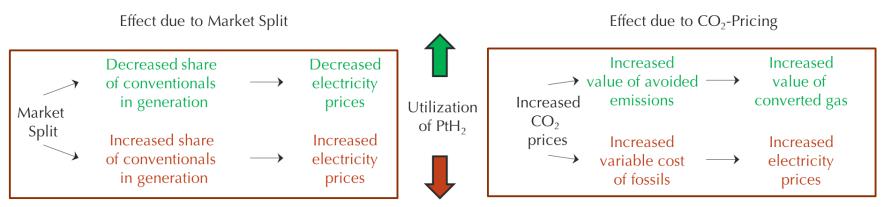


Figure 3: Effects of Market Split and CO₂-Pricing on PtH₂-Utilization

Bucksteeg, M.; Mikurda, J. and Weber, C.: Integration of power-to-gas into electricity markets during the ramp-up phase – Assessing the role of carbon pricing, Working Paper, http://hdl.handle.net/10419/242982, 2022.

Market Split of Germany

Demonstration of North-South Bottleneck

- Simplified deduction of two zones:
 - OSMOSE³ nodal price study results indentify a price differential between north and south
- Implementation:
 - Market split along federal state borders due to reasonable data availability
 - Underlying data sources:
 - Grid data information obtained from TYNDP
 - Regional RES infeed and demand timeseries:
 - Capacities on county level (NUTS3) taken from OSMOSE³
 - Then scaled to match TYNDP timeseries on national level (NUTS0)
 - County timeseries in south and north added up to obtain regional timeseries

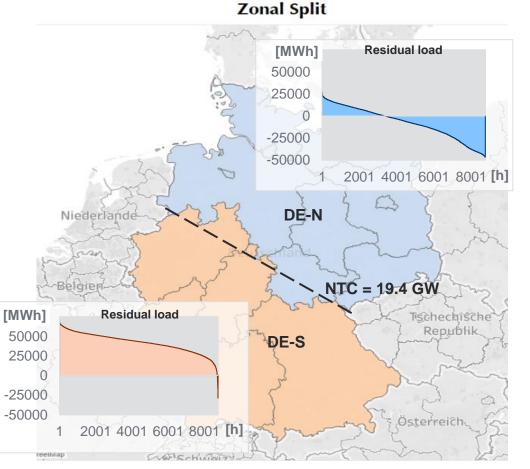
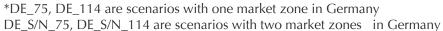


Figure 4: Regional Split Germany

³ OPTIMAL SYSTEM MIX OF FLEXIBILITY SOLUTIONS FOR EUROPEAN ELECTRICITY (OSMOSE); WP1 https://www.osmose-h2020.eu/

UNIVERSITÄT


DUISBURG ESSEN

Offen im Denken

Input data and Scenarios

- TYNDP 2020 Distributed Energy
 - Generation Portfolio
 - Production
 - NTCs

Scenarios		DE_75 / DE_S/N_75	DE_114 / DE_S/N_114
<u>CO₂ Price</u>	€/tCO ₂	75.00	114.00
Fuel costs			
Natural Gas	€/MWh _{th}	24.88	24.88
Oil	€/MWh _{th}	73.80	73.80
Coal	€/MWh _{th}	15.48	15.48
<u>Use value</u>			
PtH ₂	€/MWh _{el}	79.94	90.31

(North-South)

250 5 200 [GW] 150 100 50 0 DE DE-N DE-S Gas Solar ■ Wind Onshore Wind Offshore Other Non-Renewables Other Renewables Run-of-River Pump-Storage Reservoir

Oil

¹ Other Non-Renewables: Mainly smaller scale CHPs based on Oil and Gas ² Other Renewables: Mainly Biomass and Municipal Waste

PtH2

Installed Capacity in Germany including PtH₂ [2030]

10

350

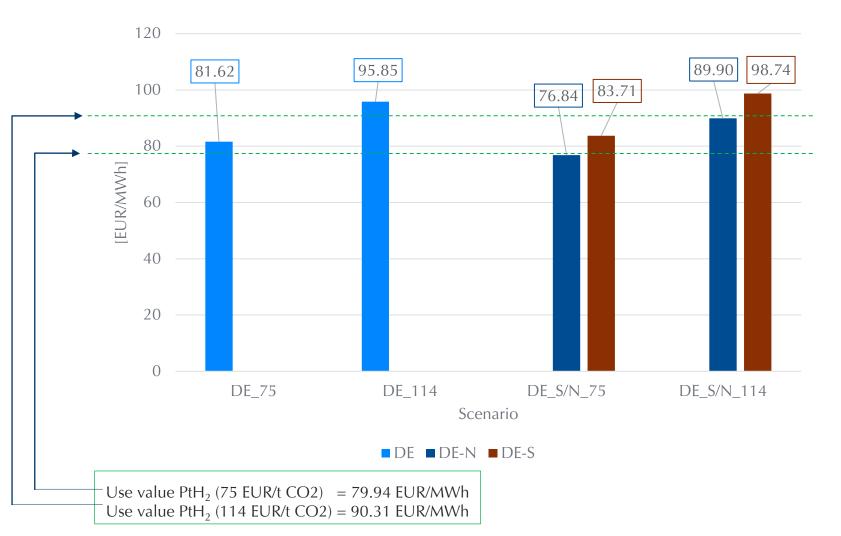
300

Battery

UNIVERSITÄT

D U I S B U R G E S S E N

Offen im Denken

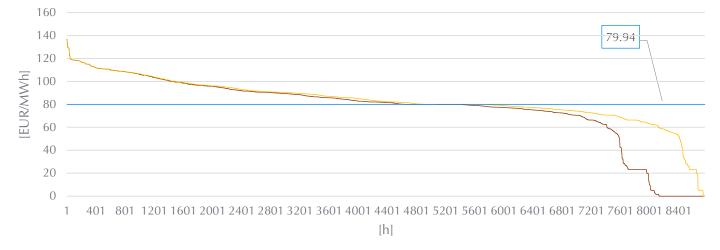


Motivation	1
Methodology and Data	2
Results and Discussion	3
Conclusion	4

Dayahead-Mean Prices

- Prices mainly affected by conventional production (i.e. natural gas)
- Zonal split leads to lower prices in north compared to south due to higher shares of RES and less demand
- Lower prices in DE-North incentivize utilization of PtH₂
 → prices are below the use value in several hours of the year

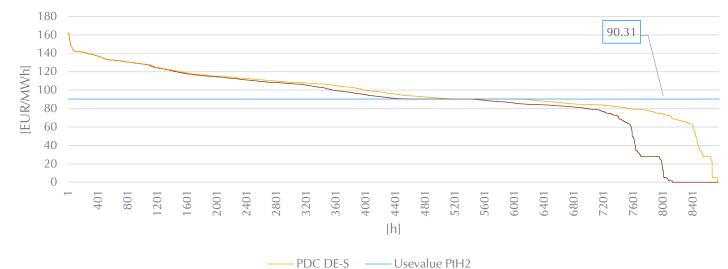
H₂-Results with 75 EUR/t CO₂


DUISBURG ESSEN Offen im Denken

UNIVERSITÄT

- More fullload hours in north compared to south
 - Due to more hours with prices below corresponding use values
- One-Zone vs. Two-Zone Scenario
 - Electrolysers show 0.63 TWh higher production in Two-Zone scenario
 - Positive effect of split at moderate CO₂-Prices
- Effect of CO₂-Pricing
 - High operating costs of conventionals are less relevant in north due to high shares of fluctuating renewables in regional generation mix

Scenarios		DE_75	DE_114	DE_S/N_75		DE_S/N_114	
<u>Region</u>		DE	DE	DE-N	DE-S	DE-N	DE-S
Operating Hours Fullload Hours	[h] [h]	3832 2560	3752 2501	4085 2843	3515 2401	4114 2841	3120 2118
Production PtH ₂	[TWh]	25.60	25.01	14.22	12.01	14.21	10.59


H₂-Results with 114 EUR/t CO₂

UNIVERSITÄT DUISBURG ESSEN Offen im Denken

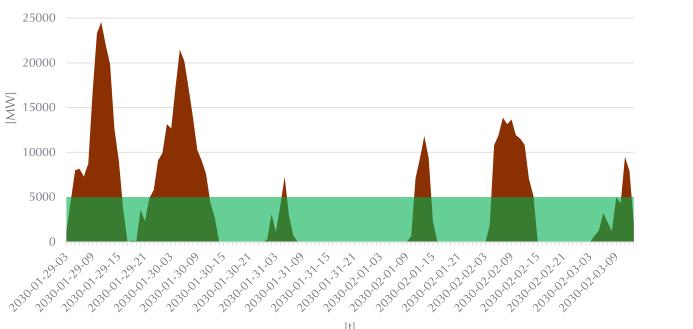
- More fullload hours in north compared to south
 - This time the difference increases while the level in the north is constant
- One-Zone vs. Two-Zone Scenario
 - One-Zone scenario has 0.2 TWh higher H₂-production in total
 - Negative effect of CO₂ price on total H₂-production in Two-Zone Scenario
- Focus on Two-Zone-Scenarios
 - H₂-production in the south is negatively affected by high CO₂ prices
 - Incentive for redistribution due to (dis-)advantage of location

Scenarios		DE_75	DE_114	DE_S/	'N_75	DE_S/I	N_114
<u>Region</u>		DE	DE	DE-N	DE-S	DE-N	DE-S
Operating Hours Fullload Hours	[h] [h]	3832 2560	3752 2501	4085 2843	3515 2401	4114 2841	3120 2118
Production PtH ₂	[TWh]	25.60	25.01	14.22	12.01	14.21	10.59

PDC - Scenario DE_S/N_114

13

Hourly Curtailment and PtH₂ Consumption in north germany 590 hours of curtailment Scenario DE_S/N_114 – Representative Time-Segment 30000


- Surplus production cannot be 25000 used from PtH₂ due to capacity 20000 limit of 5 GW in these scenarios ₹ 15000 (without IDELES) NTC to DE-S at capacity limit 10000 No statement regarding 5000 electrolyser distribution possible
- Further analysis with IDELES necessary to investigate potential investment incentives for PtH₂

House of **Energy Markets**

Shedded energy 6.2 TWh

203001-30-130-21 2030013009 2030012909 2030-01-29-15 2030012921 203001-3003 203001-31.03 203001-31-09 203001.31.15 203001-31-21 2030020103 2030020109 20300201.15 2030020121 2030020203 203002.02.09 2030020215 203002.02.21 203002.03.03 203002.03.09 [t]

■ Curtailment ■ PtH2 Consumption

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Motivation	1
Methodology and Data	2
Results and Discussion	3
Conclusion	4

- Key issue: Integration of PtH₂ during the energy transition, but regulatory barriers (especially due to inconsistent pricing of CO₂ emissions) and system related issues (north-south-bottlenecks)
- Main contribution: shed a light on CO₂ pricing and market splitting to understand investment and dispatch incentives in the integration of PtH₂ into the electricity markets

Results:

- Market split incentivizes higher utilization of PtH₂ in North Germany due to a higher share of RES
- Together with increased CO₂ prices incentives for PtH₂ utilization become even higher in North Germany due to conventional generation technologies being price setting in South Germany
- However, effects are limited by the exogenous distribution of electrolyser capacity under the market split
- Further analysis using IDELES with endogenous investment decisions will show how the observed market signals influence the integration of PtH₂

Thank you for your attention!

Marco Sebastian Breder

House of Energy Markets and Finance University of Duisburg-Essen Universitätsstr. 12 | 45117 Essen | Germany Email: <u>Marco.Breder@uni-due.de</u>

