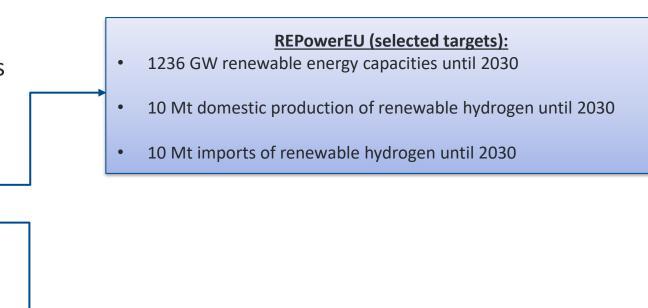


Hydrogen in the European power sector – A case study on the impacts of regulatory frameworks for green hydrogen

Julian Radek, Marco Sebastian Breder, Christoph Weber

Milan, 25.07.2023

UNIVERSITÄT DUISBURG ESSEN


Agenda	UNIVERSITÄT DEUSISEN RG Open-Minded
IAEE Milan 2023	
Motivation	1
Model	2
Data and cases	3
Results	4
Conclusion	5
References	6

Energy and climate politics

Motivation – Model – Data and cases – Results – Conclusion – References

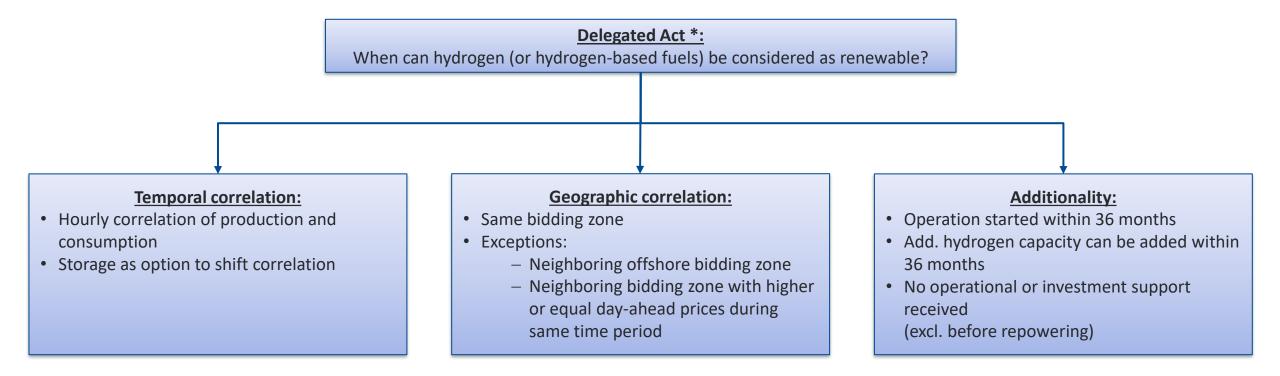
- Energy transition to achieve climate neutrality is a major goal of European politics
- Green hydrogen with key role in
 - REPowerEU
 - European Green Deal
- Renewable hydrogen addressed in the Delegated Act on article 27 of the Renewable Energy Directive (RED II)

UNIVERSITÄT

Open-Minded

EU Green Deal (main targets):

- Reduction of net greenhouse gas emission by 55% compared to 1990 until 2030
- Complete climate neutrality until 2050



RED II – Delegated Act

D_EUISBURG ESSEN

UNIVERSITÄT

Motivation – Model – Data and cases – Results – Conclusion – References

> Will the RED II criteria impede the ramp-up of electrolysis capacities in the EU?

The energy system model E2M2s

Motivation - Model - Data and cases - Results - Conclusion - References

E2M2s overview

- Model for the long-term planning and dispatch in the European electricity and heat market *
 - Endogenous capacity expansion
 - Geoscope: 34 European market areas
- Linear optimization for selected simulation years under myopic expectations
- Minimization of system costs
 - Investment and fixed costs
 - Operational costs
- Typical day approach with aggregated time segments and stochastic nodes

Integration of hydrogen sector

Hydrogen modeling

Additional hydrogen demand restriction (per market area)

Demand

Exogenous demand (e.g. industry)

+ Endogenous demand of H2-fired power plants

UNIVERSITÄT

DUISBURG

Open-Minded

- + Exports to neighboring countries
- =

Supply

Production from domestic electrolyzers

- + Imports from neighboring countries
- + Imports from third countries outside geoscope
- Third country H2 imports regulated via
 - Fixed import price per simulation year
 - Maximum export quantities of third countries

House of Energy Markets & Finance * Applications can be found in Swider and Weber (2007), Spiecker et al. (2013), Spiecker and Weber (2014), Bucksteeg et al. (2019) and Blumberg et al. (2022).

RED II restrictions in the E2M2s

Motivation - Model - Data and cases - Results - Conclusion - References

- Implementation of restrictions into an large-scale energy system model
- Solution
 - Separate wind onshore technology for electrolysis
 - Electrolyzers can only use electricity from this technology
 - Coupled with electrolyzers of the same simulation year via assignment set

Temporal correlation:

Open-Minded

UNIVERSITÄT

• Elec. consumption for H2 production ≤ Infeed of coupled wind power plant in every time step

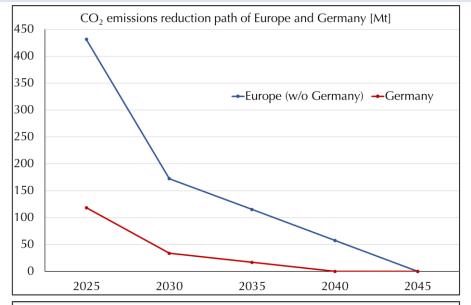
Geographical correlation:

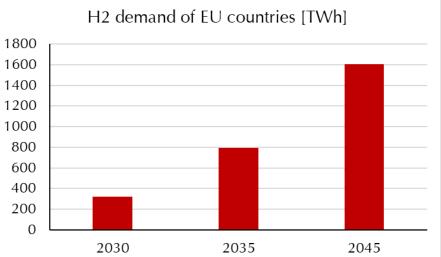
• Coupled technologies are located in the same bidding zone

Additionality:

• Investment in wind onshore plant and electrolyzer during the same simulation year

Data


UNIVERSITÄT DUISBURG ESSEN


Motivation – Model – **Data and cases** – Results – Conclusion – References

- Main data source: TYNDP 2022 *
 - Electricity and hydrogen demand
 - Electricity and hydrogen NTCs
 - Renewable energy expansion paths
 - Hydrogen export potentials of third countries
- Power plant data
 - Commercial data
- Endogenous capacity expansion possible for:
 - Renewables (Wind Onshore / Offshore, PV)
 - Electrolyzers

• • •

- Hydrogen and natural gas turbines / ccgts
- Battery storage units

25.07.2023

Case overview

Motivation - Model - Data and cases - Results - Conclusion - References

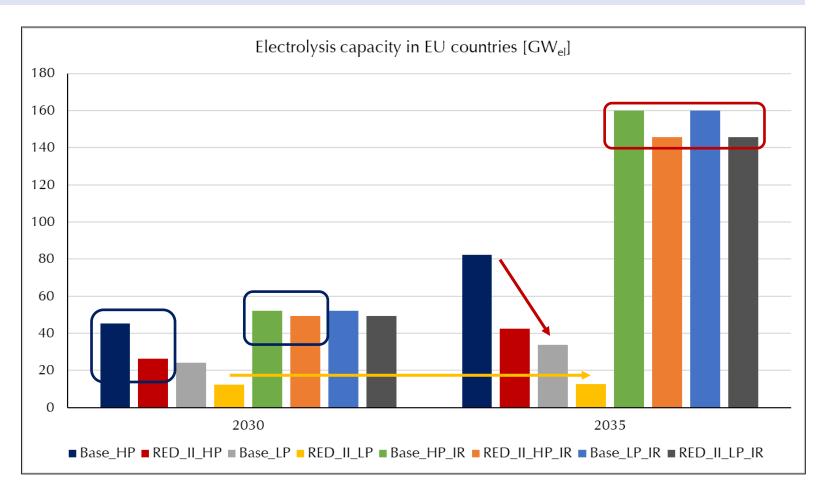
Cases	RED II restrictions	High price level (HP)	Low price level (LP)	Import restriction 3rd countries (IR)
Base_HP		Х		
RED_II_HP	Х	Х		
Base_LP			Х	
RED_II_LP	Х		Х	
Base_HP_IR		Х		Х
RED_II_HP_IR	Х	Х		Х
Base_LP_IR			Х	Х
RED_II_LP_IR	Х		Х	Х

H2 import prices [€/MWh H2]	High price level (HP)	Low price level (LP)
2025	150	150
2030	125	100
2035	100	75
2045	75	50

UNIVERSITÄT

DUISBURG ESSEN

- Quantification of effects and interaction of
 - RED II restrictions
 - Import price levels
 - Import quantity restrictions

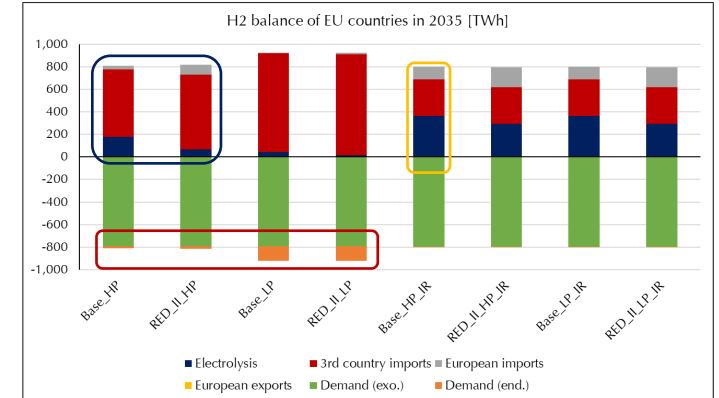

Electrolysis capacity in the EU

Motivation – Model – Data and cases – **Results** – Conclusion – References

- RED II restrictions
 - Lower investments in electrolyzers
 - Larger influence when neglecting import restrictions
- Import price level
 - Further reduction of electrolyzer investments
 - No visible influence when applying import restrictions
- W/o import restrictions

House of **Energy Markets**

 No further investment between 2030 and 2035 with RED II restrictions and low prices



UNIVERSITÄT DUISBURG ESSEN

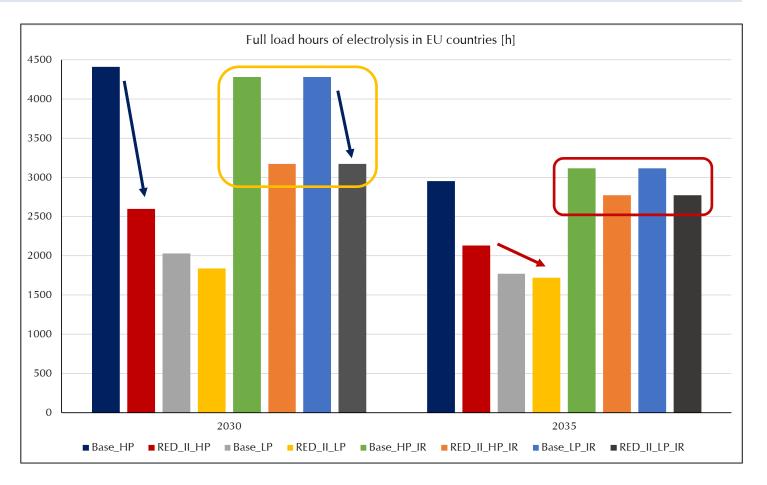
Exemplary H2 balances

Motivation – Model – Data and cases – Results – Conclusion – References

- RED II restrictions
 - Reduced H2 production by electrolysis
 - Substituted by imports from European and third countries
- Import price level
 - Low price level without import restrictions leads to higher H2 usage
 - No visible influence when applying import restrictions
- Import restrictions
 - Increased domestic electrolysis and imports from European countries

UNIVERSITÄT

Full load hours


Open-Minded

DUISBURG

UNIVERSITÄT

Motivation - Model - Data and cases - Results - Conclusion - References

- RED II restrictions
 - Reduction of FLHs in all cases
- Import price level
 - Low price level without import restrictions leads to lower FLHs
 - No visible influence when applying import restrictions
- Import restrictions
 - Higher FLHs in almost all cases

Conclusion

Motivation – Model – Data and cases – Results – **Conclusion** – References

- Modelling
 - RED II restrictions lead to lower investments in electrolyzers
 - High sensitivity to import price levels
 - Import quantity restrictions reduce these effects
 - Hydrogen-fired power plants have no mayor role in the medium-term
- Model parameters like import prices and import restrictions have to be selected carefully
- Regulatory frameworks should be evaluated under different assumptions about input parameters
- Policy implications
 - EU should monitor ramp-up closely and reflect restrictions continously
 - Domestic electrolysis necessary to meet demand and secure certain level of autarchy \rightarrow especially after energy crisis
- > Trade-off between strict criteria to ensure decarbonization goals and impeding ramp-up

UNIVERSITÄT

D_U_I_S_B_U R G

References

UNIVERSITÄT DUISBURG ESSEN

Motivation - Model - Data and cases - Results - Conclusion - References

- Politics
 - RED II: <u>https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32018L2001</u>
 - Delegated act for article 27 of the renewable energy directive (RED II): https://energy.ec.europa.eu/system/files/2023-02/C 2023 1087 1 EN ACT part1 v8.pdf
 - REPowerEU: https://commission.europa.eu/publications/key-documents-repowereu_en
 - European Green Deal: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
- Model
 - Swider and Weber (2007). The costs of wind's intermittency in Germany: application of a stochastic electricity market model
 - Spiecker et al. (2013). Evaluating interconnector investments in the north European electricity system considering fluctuating wind power penetration
 - Spiecker and Weber (2014). The future of the European electricity system and the impact of fluctuating renewable energy A scenario analysis
 - Bucksteeg et al. (2019). Impact of Coordinated Capacity Mechanisms on the European Power Market
 - Blumberg et al. (2022). The impact of electric vehicles on the future European electricity system A scenario analysis
- Data
 - TYNDP 2022 datasets: <u>https://2022.entsos-tyndp-scenarios.eu/download/</u>

Thank you for your attention

Julian Radek, M.Sc. Chair for Energy Economics House of Energy Markets and Finance University of Duisburg-Essen Universitätsstraße 12 | 45141 Essen | Germany julian.radek@uni-due.de

UNIVERSITÄT D_UIS_BURG ESSEN