

Decision on electric vehicle charging tariffs: Investigating the trade-off between system friendliness and convenience'

Marco Sebastian Breder, Florian Boehnke, Christoph Weber 8th Workshop on Experimental Economics for the Environment Bochum, 12.07.2023

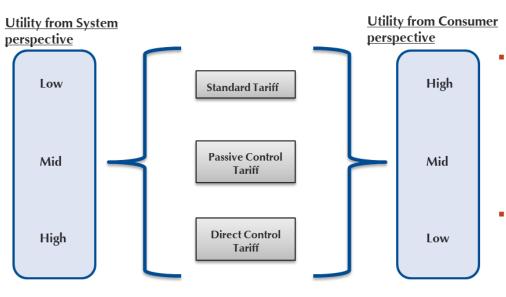
Gefördert durch:

Bundesministeriun für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

Offen im Denken

Motivation	1
Design	2
Method (empirical)	3
Method (survey)	4
Embedding of experiment in broader project context	5
Discussion	6



Motivation

Problems of system operators

- Growing peak demand
- Sector coupling
- Renewable integration (E-Transition)
- Reasons for problems:
 - Imbalance between financial costs supply & price actually paid by customers
- (Theoretical) solution
 - Cost reflective pricing price signals to shift demand
 - Improved network efficiency, reduced infrastructure costs, and lower average market prices, reduced risk (producer) & demand
 - Active control (optimized, smart charging third party access)

- 1. Do consumers prefer simple electric vehicle charging tariffs over more complex ones?
- 2. If yes, how can we change their preferences towards overall beneficial tariffs?

Perspective of consumers, i.e., households

- Cognitive biases in decision making process principle of simplicity
- Use of heuristics and "short-cuts" and rule of thumbs
 → be satisfied, even if result is economically not optimal
- Consumer prefer standard tariffs
- Observation (to date)
 - Cost-reflective pricing
 - low uptake rates
 - Users are (to date) a unique small subset
 - Possible price inelasticity (high level of optimization)
 - Active control
 - Preferences for active control rather than flat-rate and cost-reflective for **static applications**
 - loss of control is outweighed by the gain in convenience
 - No generalisation because acceptance of automated devices is highly appliance-specific

Design

- Discrete choice model
 - Software: Sawtooth
 - Recruitment in University*, via Social Networks (Strommarktgruppe etc.)
 - ~ 330 respondents
 - Concepts per choice task = 3 (No opt out)
 - Choice tasks in study = 7
 - Reward via lottery
 - Stated preferences / May I assume a hypothetical situation? -> Discussion
 - Possible treatment: Social norms (social comparison), information given by public authorities, framing, default settings

Work in progress

Definition of attributes and levels (Expert interviews**)	Creation of questionnaire and pretest as well as pilot study of the questionnaire	Execution of experiment
---	--	----------------------------

Attributes		Levels							
		20 (ndpreis: € p.M.		Grundpreis: 20 € p.M.			dpreis: p.M.	Grundpreis:
	Grundpreis: 20 € p.M. Arbeitspreis: 0,30 €/kWh	Arbeitspreis Tag (07-19)	Arbeitspreis Nacht (19-07) 0,20 €/kWh	Arbeitspreis M (07-15) 0,40 €/kWh	Arbeitspreis D (15-23) 0,30 €/kWh	Arbeitspreis N (23-07) 0,20 €/kWh	Arbeitspreis Tag (07-19) 0,40 €/kWh	Arbeitspreis Nacht (19- 07) Exakter Marktpreis*	
Control mode	Owner	+ Cor	ntractor		-				-
Contractor	Electricity discounter	Municip	al utilities	Nationa	l electricity p	oroducer		-	-
Discount	0% ^{2,3}	5	% ³		10% ³		15	% ³	-
Priority charging (SoC +Contra ctor)	0%	2	0%		40%			-	
Yrl. Costs			Depend	ding on the st	ated mileage	e from prior c	juestion		

We would set the focus on unidirectional charging

* Kind of classroom experiment

**DSOs, OEMs, Universities and research institutes

¹The estimated value is on average 0,XX €/kWh (graph)

- Day/Night (SS/WS, WE/WW

²This value applies for DumbTarif (status quo)

³ Discount for performance of complex tariffs to status quo tariff

- Sociodemographics:

- Age, gender, education, income, occupation, marital status, geographic location, household size
- Questions regarding (E-)mobility, smart home, smart technologies

Method (empirical)

- Random Utility Model (RUM) theory
 - Part-worth utility estimation*

 $U_{jm} = \beta_j X_m + \varepsilon_{jm}$

- Where
 - U_{jm} = utility plus random error for the j_{th} respondent and m_{th} alternative
 - $-\beta_j =$ vector of part-worth utilities for respondent j
 - X_m = vector of design codes describing alternative m
 - ε_{jm} = IID (Independent and Identically Distributed) rightskewed Gumbel distributed random variable
- WTP estimation

$$WTP = -\frac{\beta_j}{\beta_{price}}$$

*We might control for "left-right effect" by using alternative specific constant (asc)

Multinomial Logit

$$P_i = \frac{e^{U_i}}{\sum_{k=1}^{K} e^{U_i + \dots + e^{U_k}}}, where$$

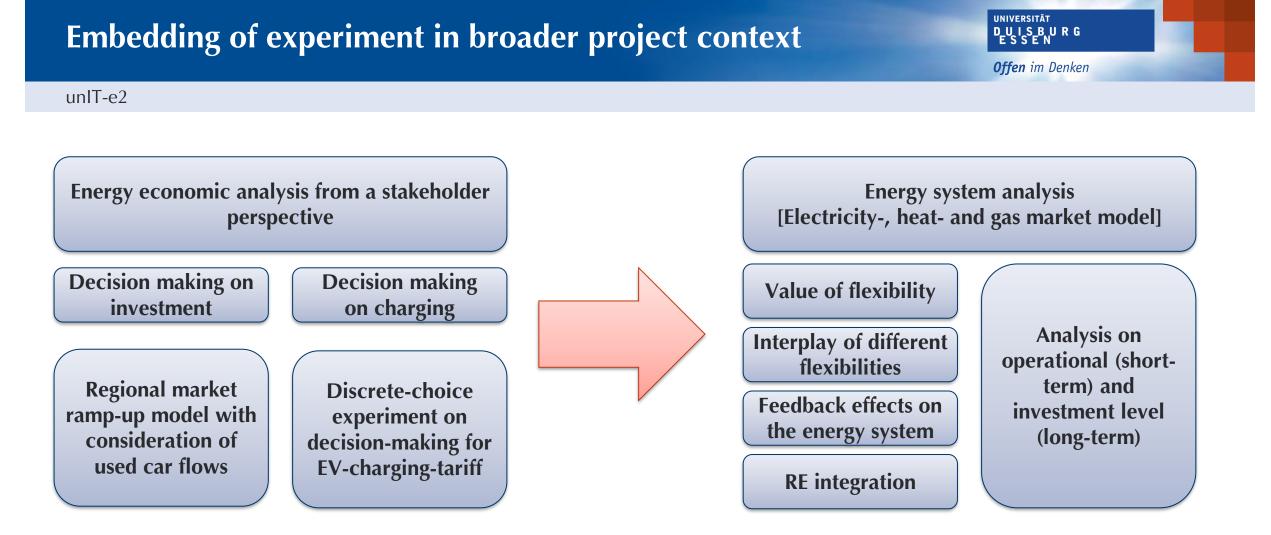
- P_i = probability of choosing alternative *i*;
- U_i = utility of the ith alternative;
- Latent Class Choice Model

$$P_n(i) = \sum_{s=1}^{S} P_n(i|s) Q_n(s), \text{ where }$$

- $P_n(i)$ = probability of individual *n* choosing alternative *i*;
- $Q_n(s)$ = probability of individual *n* belonging to latent class *s*;
- $P_n(i|s)$ = probability of individual *n* choosing alternative *i* given *n* belonging to class *s*;
- S = number of latent classes ;
- Hierarchical Bayesian Estimation
 - ability to obtain respondent-level utilities
 - appropriate for choice models when respondents are faced with multiple choice tasks
 - Two (hierarchical levels)
 - Upper level: Assumption that individuals' part-worths are described by a multivariate normal distribution (vector of means and matrix of covariances)
 - Lower level: Assumption given an individual's part-worths, that his probabilities of choosing
 particular alternatives are governed by MNL

Method (survey)

100%


- Survey Structure
 - 1. Introduction
 - 2. Storyline and information (definitions)
 - 3. Now try to put yourself in the following (fictitious) situation
 - 4. Parking space, wallbox and car
 - 5. Rel. time charging at home overnight
 - 6. Driving profile
 - 7. CBC
 - 8. Sociodemographic
 - 9. Link for participation in lottery

Wenn Sie nur diese Optionen hätten, welche würden Sie wählen?

(1 of 7)

Bepreisungsmodi	Grundpreis 20 € p.M. Arbeitspreis: 07-19 Uhr 0,40 €/kWh 19-07 Uhr 0,20 €/kWh	Exakter Marktpreis ist zeitabhängig Durschnittlich liegt der Preis bei: Sommer Tag XX €/kWh / Nacht XX €/kWh Winter Tag XX €/kWh / Nacht XX €/kWh	Grundpreis 20 € p.M. Arbeitspreis 0,30 €/kWh
Steuerungsmodus	durch Nutzer ausschließlich	durch Nutzer & Vertragspartner	durch Nutzer & Vertragspartner
Anbieter/Vertragsp	Strombilliganbieter (Discounter)	Nationale Stromversorger	Strombilliganbieter (Discounter)
Bonuszahlung (jährlich)	bis zu 10%	bis zu 5% NiP	bis zu 0%
Ladestrategie/ -zustand	40%	0%	0%
Preis	516.096	516.096	460.8
	Auswahl	Auswahl	Auswahl

House of Energy Markets & Finance

Thank you for your attention

Marco Sebastian Breder, M.Sc. Team "Energiemärkte und Energiepolitik" House of Energy Markets and Finance University of Duisburg-Essen R11 T07 C02 | Universitätsstraße 12 | 45141 Essen | Germany Tel. +49 201/18-36459 | Fax +49 201/18-32703 Email: Marco.Breder@uni-due.de www.ewl.wiwi.uni-due.de

13.07.2023