

# Learnings and Prospects of Stochastic Modeling in Adequacy Assessments ... and beyond

amprion

October 26, 2023 | Prof. Dr. Christoph Weber Project Workshop (VeSiMa)

> UNIVERSITÄT DUISBURG ESSEN

**Open-**Minded





### **Decision support for sustainable energy systems**

### Learning from the data

### Making best use of domain-specific knowledge

> VeSiMa is a showcase example







### **Key modules assembled for purpose**

UNIVERSITÄT DUISBURG ESSEN

**Open-**Minded



### **Key achievements regarding the purpose:**

Resource adequacy assessment for sustainable electricity systems



### Full tool chain operational

- Enables resource adequacy assessment based on ten thousands of stochastic simulations
- Inclusion of multiple interdependent stochastic factors along with deterministic drivers
- Rapid fitting to varying scenario settings possible

- Endogenous treatment of capacity expansions using an EVA-type approach (economic viability assessment)
- Improved treatment of hydro reservoirs and CHP
- Test of further stochastic specifications



#### Α А Key achievements regarding Fitting UNIVERSITÄT **Stochastic** DUISBURG ESSEN non-parametric renewables modelling: simulation of distributions **Open-**Minded renewables and for renewables load and load

- Full coverage of major countries and technologies
- Stochastic modelling approach enabling detailed simulations
- Non-parametric approach adapting flexibly to multivariate data
- Inclusion of multiple interdependencies in space and time along with deterministic drivers
- Based on large set of empirical data (PECD by ENTSO-E)

- Testing of alternative specifications especially regarding temporal interdependencies
- Test of machine learning approaches
- Extension of the geographical scope





- Coverage both of **planned maintenance** and **forced outages**
- Adapted stochastic approach to match failure characteristics
- Fitted to large set of empirical data (power plant database by ENTSO-E)

- Improved data cleansing methods
- Pooled regressions across technologies and vintage classes





- Development of a LSMC approach at system level
- Generalization to the **multi-storage** and **multi-country** case
- Efficient computation for large samples

- Extension to demand-side flexibilities
- Improved handling of international interconnections





- Implementation of a simplified optimization to check international back-up possibilities when needed
- Efficient computation for large samples
- Intertemporal optimization plus regression to assess impacts on national net load

- Prediction of grid congestions based on neural networks
- Principal component analysis of drivers for congestions



- Building-up basic model not overly complex
- Testing and comparison of multiple specifications time-consuming
- **Multiple storages** and flexibilities **challenging** both methodologically and computationally
- **Data quality** challenging for outage data

- Application study requires careful calibration even if number of parameters limited
- Results aligned with expectations
- In extreme situations, additional **operational constraints** have a **large impact** on load shedding







### Stochastic modeling in adequacy assessments: VeSiMa vs. ERAA

**Open-**Minded

#### Incorporating stochastics in the VeSiMa simulation tool

• Stochastic factors: Wind onshore & offshore, PV and run-of-river generation, load, power plant availability



### Stochastic modeling in adequacy assessments: VeSiMa vs. ERAA

DUISBURG ESSEN

UNIVERSITÄT

#### **Incorporating stochastics** in the ENTSO-E European Resource Adequacy Assessment (ERAA):

- Climate years to reflect stochastic fluctuations
  - No explicit stochastic modelling
- Monte-Carlo simulations for power plant availability
- System operation optimized under perfect foresight for sample years - including also storage







### **Consequences for the adequacy assessment**

- Solely using climate years and outage scenarios limits possibilities to quantify rare extreme events
- Use of a deterministic optimization model assumes (unrealistically) perfect forecasts and perfect coordination

ENTSO-E. European Resource Adequacy Assessment 2022 Edition: Annex 2: Methodology







### **Possible future applications**

- **1.** Stochastic price simulations
  - Already implemented in the current model  $\rightarrow$  basis for optimal storage operation
  - **Extensions** possible along the lines of **ParFuM**, the parsimonious fundamental model, to cope with further fundamental effects, e.g., CHP (cf. Kallabis et al. 2016, Beran et al. 2019)
  - Improved fitting to empirical prices possible along the lines of Pape et al. (2016) and Vogler et al. (2023)
- 2. Estimations of renewable resource droughts ("Dunkelflauten")
  - Relevant for the **dimensioning of back-up** capacities and/or long-term storage capacities
  - Stochastic simulations of renewable infeed, load and availabilities as basis
  - New evaluation tools needed, focusing on the cumulative energy deficit
- **3.** Grid reserve dimensioning year-ahead ("Bedarfsanalyse")
  - Yearly process by German TSOs to ensure feasibility of load serving in (winter) stress situations
  - Could be based on stochastic simulations of load and infeed at regional (e.g. state) level
  - Stochastic simulations have to be adapted to subnational data



### Further data-driven approaches for decision support

#### **Current project applications:**

- 1. Efemod: use publicly available data to empirically estimate the parameters for energy system and energy market models using modern methods of statistics and machine learning
  - Notably use of ENTSO-E transparency platform data in conjunction with other data
  - Empirical substantiation of key model parameters of bottom-up energy system models
  - Strengenthening of medium-term forecasting capabilities for more aggregated energy market models
  - Application include valuations of demand flexibility and storage
- 2. FEVEA: use available market data and statistical models to determine fair values for PPAs (power purchase agreements), notably for wind energy
  - Transpose concept of fair valuation from finance to energy markets
  - Detailed empirical analysis of prices and quantities with a focus on the intraday market
  - Modelling of all relevant markets and effects like forecast updates
- 3. Ongoing application: Extension of the VeSiMa modelling approach to multiple sectors and under consideration of impacts of climate change
  House of Energy Markets

UNIVERSITÄT

**Open-**Minded

#### **Decision support for sustainable energy systems**

can be improved by

- learning from the data in combination with
- making best use of domain-specific knowledge.

Particularly relevant in case of **abundant data** and **infrequent events**, e.g., **threats to resource adequacy** 

VeSiMa has developed a novel approach – which can certainly provide added value in this application and beyond.





## Thank you for your attention.

#### **Prof. Dr. Christoph Weber**

Lehrstuhl für Energiewirtschaft House of Energy Markets and Finance Universität Duisburg-Essen Universitätsstraße 12| 45141 Essen | Germany Email: <u>Christoph.Weber@uni-due.de</u> <u>www.ewl.wiwi.uni-due.de</u>



