

Link between Generation Adequacy and Market Modeling: Unveiling Vulnerabilities of the Energy System

October 26, 2023 | Jennifer Mikurda Project workshop (VeSiMa)

Model coupling: Link between stochastic and deterministic modeling	1
Extreme simulation	2
Deterministic modeling in JMM: Basics and market results	3
Generation Adequacy – Comparison of JMM and VeSiMa results	4
Conclusions	5

Dealing with stochasticity in Generation Adequacy evaluation

- Focus so far: comprehensive quantification of stochastic variations in key power system characteristics, but no market modeling
 - Simulation model to assess generation adequacy based on expected energy not served (EENS) and loss of load expectation (LOLE)
 - Not modeled: a) Detailed technical and economic power plant restrictions,
 b) Economically driven unit commitment of power plant or storages
- Problem a): No assessment of market outcomes possible (under adequacy risk) using the simulation model
 - Open question: How does the power system and markets deal with rare but extreme scarcity events?
- Problem b): Large-scale fundamental electricity market models are deterministic
 - How to link the probabilistic simulation model and the deterministic electricity market model?

Generation Adequacy – How to involve deterministic market modeling?

Link of stochastic and deterministic modeling

- Identification of a suitable simulation for Generation Adequacy Assessment
 - Selection of an "extreme" simulation

UNIVERSITÄT

DUISBURG ESSEN

- Characteristics for extreme simulation:
 - Key indicator: Annual ENS
 - Interdependencies between different regions should be taken into account
- Geometric mean over all simulated regions r:

$$ENS_{geom} = \sqrt[n]{\prod_{r=1}^{n} ENS_r}$$

Charateristics of the extreme simulation

 Nowhere more than 10 LOLE-hours in any region, ENS concentrated in limited number of scarcity events

- Four time periods with ENS up to 12 GWh in one region
- Simulateinity of ENS events observable for different regions

	Sum of Annual ENS [MWh]	Number of LOL - Events [h]		
AT	0	0		
BE	15,592	9		
СН	29,608	10		
CZ	0	0		
DE	47,577	8		
DK	7,774	7		
FR	29,332	5		
IT	0	0		
NL	4,083	7		
PL	271	1		
UK	9,970	10		
Sum	144,207	57		

UNIVERSITÄT

D U I S B U R G E S S E N

Basics of deterministic electricity market model JMM

- Deterministic electricity market model
 - Heat market (CHP restrictions), reserve market included
 - Widely used in previous studies (e.g. Trepper et al. (2015))
- Model output: Dispatch decisions of power plants and storages
 - No investment decisions
- System cost minimization
 - Only variable cost (mainly fuel prices, emission costs)
 - Restrictions e.g. demand covering and technical restrictions (minimum up- and down-times etc.)
- Usually, simulation of one year in an hourly resolution
 - Rolling planning horizon with weekly looping

Input data based on extreme simulation for deterministic modeling

- ERAA 2021 National Estimates Scenario as basis
 - Simulation year 2025
 - 11 regions: AT, BE, CH, CZ, DE, DK, FR, NL, IT, PL, UK
 - Harmonization of input data for VeSiMa and JMM especially for power plant and storage capacities based on ERAA 2021
- Timeseries for power plant availabilities and electricity residual demand (electricity demand, PV, wind, RoR) as an input from the VeSiMa model based on extreme simulation

Market results of deterministic modeling

 Annual generation mix (without PV, Wind, RoR, battery and pump storage discharge)

Annual net export

Generation Adequacy: ENS concentration on limited peak periods in JMM

- Energy Not Served can be seen in 81 hours over the whole year in JMM
 - Concentration in September (16th-17th) and October (29th)
- Highest ENS can be seen in Germany (up to 24,2 GWh in 09-17-17 and 19,9 GWh in 10-29-18)
 - Remember: case that happens one time in 10,000 years
- Maximum simultaneity of 6 six countries can be seen in three hours of the year, in 49 hours ENS appears just in one single country

UNIVERSITÄT DUISBURG ESSEN

Generation Adequacy: Higher ENS in the deterministic market model

- UNIVERSITÄT D_U I S_B_U R G E S S E N Offen im Denken
- In JMM, remarkably higher ENS and LOLE than in stochastic VeSiMa model
 - Significant differences especially in DE, DK, PL
- No ENS for both models in AT and IT
- Highest annual ENS in DE for both models, but more than 285 GWh additional ENS in JMM

	Sum of Annual	Energy not Served	Number of LOL - Events		
	[MWh]		[h]		
	JMM	VeSiMa	JMM	VeSiMa	
AT	0	0	0	0	
BE	34,669	15,592	22	9	
СН	0	29,608	0	10	
CZ	745	0	2	0	
DE	333,310	47,577	32	8	
DK	38,092	7,774	32	7	
FR	92,125	29,332	15	5	
IT	0	0	0	0	
NL	9,554	4,083	8	7	
PL	34,606	271	36	1	
UK	39,177	9,970	20	10	
Sum	582,277	144,207	167	57	

Differences in ENS estimation in VeSiMa and JMM: Example Germany

- In September, ENS on two consecutive days in JMM, whereas in VeSiMa, no ENS occured
- In October, ENS developments similar in both models, but on a higher level in JMM

UNIVERSITÄT DUISBURG ESSEN

ENS differences between JMM and VeSiMa: root cause analysis

DUISBURG ESSEN Offen im Denken

UNIVERSITÄT

- Key reason: JMM is more restrictive than VeSiMa model
 - **CHP restrictions** -- *reduce electricity generation capability of CHP power plants*
 - Reserve provision -- implicitly increases total electricity demand
 - Minimum up- and downtimes -- reduce flexibility of power plants
 - **Start-up costs** *reduce flexibility of power plants*
- Different modeling of seasonal hydro reservoirs
 - Natural inflows replaced by pumping in VeSiMa
- Rolling planning in JMM may also have an impact because of limited foresight
 - Relevant e.g. for storage usage

Sensitivity analysis : Convergence in energy not served (ENS) with aligned model configuration

- Sensitivity: Neglection of heat restrictions, reserve restrictions, start-up costs and minimum upand down-times
- Significant reduction of ENS in JMM, but sum of ENS over all regions is still higher than in VeSiMa
 - High impact especially for DE and Poland
- ENS values of JMM deterministic and stochastic modeling are converging, partly even lower values in JMM

	Sum of Annual Energy not Served [MWh]			Number of LOL - Events [h]		
	JMM	JMM_sensitivity	VeSiMa	JMM	JMM_sensitivity	VeSiMa
AT	0	0	0	0	0	0
BE	34,669	12,595	15,592	22	5	9
СН	0	0	29,608	0	0	10
CZ	745	0	0	2	0	0
DE	333,310	84,451	47,577	32	12	8
DK	38,092	5,684	7,774	32	6	7
FR	92,125	56,806	29,332	15	10	5
IT	0	0	0	0	0	0
NL	9,554	59	4,083	8	1	7
PL	34,606	0	271	36	0	1
UK	39,177	2,085	9,970	20	3	10
Sum	582,277	161,681	144,207	167	37	57

- Outcomes of the stochastic VeSiMa approach have been compared to the results of the deterministic market model JMM based on two runs:
 - a median simulation (not shown here)
 - an extreme simulation
- Results not be overinterpreted in absolute terms: the extreme simulation is an extremely rare case (1 out of 10,000 years)
- Yet in this extreme case, the more complex representation of power plant and storage dispatch restrictions in the market model **impact substantially the generation adequacy indicators**
- Additional restrictions increase the expected energy not served
 - partly in hours without any supply deficit in VeSiMa

Thank you for your attention.

M.Sc. Jennifer Mikurda

Lehrstuhl für Energiewirtschaft House of Energy Markets and Finance Universität Duisburg-Essen Universitätsstraße 12| 45141 Essen | Germany Email: jennifer.mikurda@uni-due.de www.ewl.wiwi.uni-due.de

26/10/2023