

OR-models for the energy transition – coping with uncertainty and heterogeneity

Christoph Weber OR Hamburg August 30, 2023

UNIVERSITÄT DUISBURG ESSEN

Energy has been a risky business... ... and will remain so:

UNIVERSITÄT DUISBURG ESSEN

Introduction

Oil price forecasts from 2009 onwards

Electricity price forecasts from 2019

Probabilistic forecasts available online on https://www.uee.wiwi.unidue.de/forschung/prognose-vonstrompreisen/ Short-term forecasts Huge uncertainties Red: 1%/99% quantiles \geq Green: 25%/75% quantiles \succ Source: Florian Ziel (2019) 00:00 12:00

House of Energy Markets & Finance 00:00

Feb 23, 2019

12:00

Feb 24, 2019

100

The energy world has always been heterogenous... ... and this gets even more important recently

Introduction

Cumulative CO2 emissions of German households 1990

■ food Sclothes home energy at home energy for transportation transport I leisure dothers

Source: Weber, Perrels (2000) Weber (1998)

Premia for energy efficiency in German house prices 2014 - 2018

UNIVERSITÄT D U I S B U R G E S S E N

Open-Minded

3

Source: Taruttis, Weber (2022)

in %

Introduction

- Uncertainty and risk have been around in energy and climate for decades
- Also heterogeneity among households, policy makers and countries play a role for a long time
- > Especially uncertainty and risk have also been in the focus of **Operations Research** for years

- What OR approaches may be used to cope with them?What is useful and for what purposes?
- > A few examples & some more general thoughts

Introduction	1
Scenarios: use and misuse	2
Stochastic Optimization: splendor and mirages	3
Policy Advice: simple answers and beyond	4
Ongoing work: coping with large systems with heterogenous components	5
Final remarks	6
House of Energy Markets & Finance	

Optimizing decisions not directly under the control of the decision maker: **Potentially misleading results**

Scenarios

- Distinction of **descriptive and normative scenarios**
 - Two descriptive scenarios:
 - Stagnation (or "Tendencial Bleak")
 - Business As Usual (or "Tendencial Rosy")
 - Two **normative scenarios**:
 - Sustainability through Technological Breakthrough
 - Sustainability through Reflective Consumption
- Lessons learnt: (cf. Weber, Heidari, Bucksteeg 2021; also Weber 2005)
 - **Descriptive scenarios** should reflect
 - multiple possible futures
 - uncertainties regarding variables outside the control of the decision maker
 - Normative scenarios should help decision makers
 - > to make the best **decisions on variables under their control**

UNIVERSITÄT D U I S B U R G E S S E N

Key scenario assumptions & Scenario results: electricity production development

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Scenarios

	Conflict	Climate - Policy	Climate - Market	Efficiency	Secure Growth	
Demand	mid	low	low	mid	high	
Politically driven RES development	mid	high	high	mid	low	
Fuel prices	mid	high	high	high	low	i
CO2-reduction compared to 1990	60%	95%	95%	80%	30%	
Acceptance of nuclear power	low	low	low	high	high	
RES policy change [year]	2030	(-)	2020	2030	2040	

Normative scenario: Radek et al. (2022): Final report for the German regulator BNetzA (Gutachten NEMO VIII, Los 3) – so-called Paris scenario

Scenarios

- Main objective:
 Achieve climate neutrality at lowest cost in 2045 for Germany and in 2050 for Europe as a whole
- Modelling of electricity, (district) heat and hydrogen in the context of the electricity grid development plan
- > At the time not the central scenario
 - Study was mandated in 2020 before the constitutional court mandated the German government to provide detailed emission targets for future years
- But intended to inform the regulator
- CO₂ emission limits were derived using a carbon budget approach

UNIVERSITÄT

D U I S B U R G E S S E N

Open-Minded

CO₂ emission constraints for Germany and Europe (w/o Germany) in a Paris scenario

Radek et al. (2022): Final report for the German regulator BNetzA (Gutachten NEMO VIII, Los 3) – so-called Paris scenario Selected results

Import

Scenarios

1100

Electricity supply and demand (annual values)

Installed capacities generation and storage

UNIVERSITÄT DUISBURG ESSEN

Introduction	1
Scenarios: use and misuse	2
Stochastic Optimization: splendor and mirages	3
Policy Advice: simple answers and beyond	4
Ongoing work: coping with large systems with heterogenous components	5
Final remarks	6

The WILMAR-JMM Model: Stochastic Optimization Model to Study the Operational Impacts of High RES penetration

Rolling Planning

detailed model formulation cf. Weber et al. 2009)

> Focus on operation of future energy systems with high shares of renewables

(1)

Key ingredients: Three-stage stochastic program

& Finance

$$\min \begin{cases} \sum_{s \in S} \pi_S \sum_{t \in T} \sum_{i \in I} c_i^{Operation} (P_{i,t}^{Day} + P_{i,s,t}^+ - P_{i,s,t}^-) \\ + \sum_{s \in S} \pi_S \sum_{t \in T} \sum_{i \in I} c_i^{Start - up} (V_{i,s,t}^{Onl}, V_{i,s,t-1}^{Onl}) \\ - \sum_{s \in S} \pi_S \sum_{i \in I} c_{i,s,t}^{Opp} (V_{i,s,t}^{Onl}, K_{i,s,t}^{Sto}) \\ + \sum_{s \in S} \pi_S \sum_{t \in T} \sum_{r \in R} (l^L Q_{r,s,t}^{INT} + l^{SP} Q_{r,s,t}^{SPIN} + l^{RP} Q_{r,s,t}^{RP}) \\ + \sum_{t \in T} \sum_{r \in R} l^L Q_{r,t}^{DAY} \end{cases}$$

$$\sum_{i \in I_{r}} P_{i,t}^{Day} + p_{r,t}^{ExpW} + \sum_{\bar{r} \in R} ((1 - c_{r,\bar{r}}^{Loss}) \cdot R_{r,\bar{r},t}^{Day}) = \sum_{i \in I_{r}^{Stor}} W_{i,t}^{Day} + \sum_{\bar{r} \in R} R_{\bar{r},r,t}^{Day} + d_{r,t}^{Exp} - Q_{r,t}^{DAY} \quad \forall t \in T^{Day}; \ r \in R \qquad \text{day-ahead energy balance} \qquad (2)$$

$$\sum_{i \in I_{r}} (P_{i,s,t}^{+} - P_{i,s,t}^{-}) + \sum_{\bar{r} \in R} ((1 - c_{r,\bar{r}}^{Loss})(R_{r,\bar{r},s,t}^{+} - R_{r,\bar{r},s,t}^{-})) + \sum_{i \in I_{r}^{Stor}} (W_{i,s,t}^{-} - W_{i,s,t}^{+}) - P_{r,s,t}^{-,W} = \sum_{\bar{r} \in R} (R_{\bar{r},r,s,t}^{+} - R_{\bar{r},r,s,t}^{-}))$$
intraday energy balance

$$+ p_{r,t}^{ExpW} - \left(p_{r,s,t}^{UpdW} - P_{r,t}^{SpW} \right) - \left(d_{r,t}^{Exp} - d_{r,s,t}^{Upd} \right) - Q_{r,s,t}^{INT} \quad \forall \ s \in S; \ t \in T; \ r \in R$$
(3)

 $\sum_{i \in I_r} P_{i,s,t}^{Sp,+} + \sum_{i \in I_r^{Stor}} W_{i,s,t}^{Sp,+} + P_{r,t}^{SpW} \ge d_{r,s,t}^{Sp,+} - Q_{r,s,t}^{SPIN} \quad \forall s \in S; \ t \in T; \ r \in R \quad \text{reserve provision}$ House of Energy Markets House of

13

Applications of the WILMAR-JMM model

UNIVERSITÄT

Meibom, Weber, Barth, Brand (2009): Operational costs induced by wind energy

Meibom *et. al.* (2011): **Operational impacts of high wind penetrations in Ireland**

The E2M2s model: Modelling future energy scenarios with fluctuating renewables and endogenous capacity expansion

Key ingredients: Linear program with operational and fix cost $TC = \sum_{n} \sum_{u} \sum_{t} \sum_{n} (d_{t} f_{t} \Psi_{s(t),n})$ objective function: total cost $(OC_{r,u,t,n} + SC_{r,u,t,n} + FC_{r,u,t,n}))$ objective function: total cost $OC_{r,u,t,n} = \frac{p_{r,u,t}^{FUEL} + \varepsilon_{u}^{CO2} p_{t}^{CO2}}{\eta_{u}^{n}} (P_{r,u,t,n} - l_{u} L_{r,u,t,n}^{odl})$ operating fuel costs $+ \frac{p_{r,u,t}^{FUEL} + \varepsilon_{u}^{CO2} p_{t}^{CO2}}{\eta_{u}^{0}} l_{u} L_{r,u,t,n}^{odl} + c_{u}^{odh,op} P_{r,u,t,n}$ considering part-load efficiency $SC_{r,u,t,n} = a(i, T_{u}^{He})c_{u}^{inv} L_{r,u,t}^{new} + c_{u}^{odh,fix} L_{r,u,t}$ fix cost $FC_{r,u,t,n} = a(i, T_{u}^{He})c_{u}^{inv} L_{r,u,t}^{new} + c_{u}^{odh,fix} L_{r,u,t}$ fix cost $CC_{r,u,t,n} = c_{u,t}^{sub} L_{r,u,t}^{sub}$ capacity online limited by installed capacity $H_{r,u,t}$

capacity started up

 $\frac{1}{\sum\limits_{n'} \Psi_{s(t-1) \to s(t), n' \to n}} \sum\limits_{n'} \tau_{s(t-1) \to s(t), n' \to n} \left(L_{r, u, t, n}^{onl} - L_{r, u, t-1, n'}^{onl} \right)$

 $P_{r,u,t,n} \ge l_u L_{r,u,t,n}^{onl}$

 $P_{r,u,t,n} \leq L_{r,u,t,n}^{onl}$

 $L_{r,u,t,n}^{stu} \ge$

House of Energy Markets & Finance

& Recombining tree of renewable realizations

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

 $H_{r,u,t,n} \leq \frac{1}{\sum_{n'} (\psi_{s(t-1) \to s(t),n' \to n})}$ $F_{r,u,t,n} = \sum_{n'} (\psi_{s(t-1) \to s(t),n' \to n} H_{r,u,t-1,n-1}) \quad \text{daily storage} \quad \sum_{u} (L_{r,u,t,n}^{onl} - P_{r,u,t,n}) \geq \varsigma_{r}^{res} \sum_{u} P_{r,u,t,n} \text{ spinning reserve}$ $-P_{r,u,t,n} + W_{r,u,t,n} + \eta_{u}^{cyc} P_{r,u,t}^{pum}$ $F_{r,u,t,n}^{pum} \leq \rho_{u,t} L_{r,u,t}^{pum} \sum_{u} (\rho_{u,t} L_{r,u,t} - L_{r,u,t,n}^{onl}) \geq L_{r}^{res} \quad \text{standing reserve}$ $H_{r,u,m,n_{H}} \leq H_{r,u,m-1,n_{H}}$ $-\sum_{t \in m} \sum_{n \in n_{H}} (d_{t} f_{t} \psi_{s(t),n} (P_{r,u,t,n} + W_{r,u,t,n})) \quad \text{seasonal storage} \quad E_{r \to r',t,n} \leq C_{r \to r',t} \quad \text{transmission constraints}$ $\sum_{u} P_{r,u,t,n} + \sum_{r'} (E_{r' \to r,t,n} - E_{r \to r',t,n}) = D_{r,t} + \sum_{u} P_{r,u,t,n}^{pum} \quad \text{energy balance}$ 15

Application of the E2M2s model: Spiecker, Vogel, Weber (2013): Evaluating interconnector investments in the north European electricity system considering fluctuating wind power penetration Open-Minded

Stochastic optimization

Geographical scope and considered line investments

Impact of stochastic modelling on generation investment

2.5

Discounted welfare gains on a per country basis (base year 2020)

Multivariate stochastic infeed timeseries Schinke-Nendza et al. (2021): Probabilistic forecasting of photovoltaic power supply

Stochastic optimization

Method: Hybrid model for multivariate probabilistic forecasts

Application study

high voltage power system of N-ERGIE
 Netz GmbH in the south of Germany

UNIVERSITÄT

D U I S B U R G E S S E N

- 53 utility-scale PV units selected
- connected to five nodes

Forecasts errors physical model (PM-B): histogram (diag.), scatter plots (bottom left), Kendall's tau (top right)

-0.4 0.2 -0.4 0.2 0.4 n_1 0.65 0.49 0.41 0.59 4 0.4 Õ n_2 0.63 0.43 0.34 -0.4 4 n_3 o. 0.53 0.44 4 0.4 0 n_4 0.59 -0.4 4.0 0 0.2 0.2 0.2 -0.4 -0.4 -0.4

Overall model performance: Energy score (ES) and variogram-based scores (VS1 and VS2) of intraday forecasts

Deterministic model	Probabilistic m.	ES	VS1	VS2
PM-VARX	D-vine	2.04	3.06	2.76
PM-VARX	MVN	2.09	3.11	2.80
PM-VARX	UVN	2.15	3.56	3.22
VARX-B	D-vine	2.10	3.08	2.78
VARX-B	MVN	2.18	3.12	2.81
VARX-B	UVN	2.23	3.62	3.28
PM-B	D-vine	2.22	3.59	3.25
PM-B	MVN	2.38	3.86	3.49
PM-B	UVN	2.39	4.01	3.62

Key insights regarding stochastic optimization

Stochastic Optimization

- Uncertainty is almost ubiquitous in energy and climate modelling
- Stochastic optimization is a conceptually attractive option to cope with uncertainties

But:

- There are too many uncertainties to put them into one model
- Computational complexity increases exponentially both in the number of stochastic factors and the stages (timesteps) in the stochastic program
- Modelling and parametrizing uncertainties is by itself challenging
- There is still plenty to be researched regarding tailored approaches to cope with key uncertainties

Introduction	1
Scenarios: use and misuse	2
Stochastic Optimization: splendor and mirages	3
Policy Advice: simple answers and beyond	4
Ongoing work: coping with large systems with heterogenous components	5
Final remarks	6

First application example Trepper, Bucksteeg, Weber (2015): Market splitting in Germany – New evidence from a three-stage numerical model of Europe

Policy Advice

louse of

Energy Markets

Overall approach

Two-stage optimization with rolling planning for German scheduling and redispatch

UNIVERSITÄT

D U I S B U R G E S S E N

- Overall problem split into three subproblems to limit computation time
- Later (e.g. Felling et al. 2023) scheduling and redispatch implemented at European scale
- Further changes include e.g., nodal power flows and flow-based market coupling (FBMC)

Trepper, Bucksteeg, Weber (2015): Market splitting in Germany – New evidence from a three-stage numerical model of Europe Key results

Policy Advice

Regional distribution of congestion

Impact of market splitting on redispatch quantities

UNIVERSITÄT

D U I S B U R G E S S E N

- ➤ Total redispatch cost decrease by 64 %
- Impact on overall system costs depends on efficiency losses in redispatch vs. market clearing
- But also incentive effects cf. next example 22

23

Second application example Breder, Meurer, Bucksteeg, Weber (2023): Spatial Incentives for Power-to-hydrogen through Market Splitting

Policy Advice

- Analysis of incentive effects for electrolyzers through market splitting
- Use of JMM with an extension for endogenous investments
 IDILES: based on Benders decomposition

Investigated configurations

Driver for use value		Steam reforming	Green hydrogen imports
Bidding zone \downarrow configuration	Reference run	SMRdom	GreenImp
Status quo SQ	SQ_0	SQ_SMRdom	SQ_GreenImp
Market split MS	MS_0	MS_ SMRdom	MS_ GreenImp
House c Energy & Finan	of Markets ce	-	

Considered zonal split

hours

& Finance

24

Policy Advice

Free CO₂ certificate allocation:

- > Example of policy instrument defying the logic of a simple optimization problem
- > Other examples: renewable infeed tariffs & standard retail contracts applied to prosumers
- > Solution here: mixed complementarity problem (MCP),
 - 8 comlementarity cond. derived from first order cond. for profit maximizing agents and market clearing conditions

Supply – demand equilibrium	$\sum_{i} Q_{i,s} \ge D_s \left(1 - \alpha (P_s - P) \right)$	\bot	$P_s^{Elec} \ge 0$	$\forall s$	(1)
Capacity Constraint	$K_i \cdot \phi_i - Q_{i,s} \ge 0$	Т	$\Pi^0_{i,s} \ge 0$	$\forall s, \forall i$	(2)
Capacity balance	$K_i^{old} + K_i^{new} - K_i \ge 0$	Т	$\Pi^1_i \geq 0$	$\forall i$	(3)
Contribution margin $\Pi_{i,s}^0$	$C_{i}^{misc,var} + \frac{1}{\eta_{i}} \left(C_{f(i)} + e_{f(i)} P^{CO2} \right) + \Pi_{i,s}^{0} \ge 0$	Т	$Q_{i,s} \geq 0$	$\forall s, \forall i$	(4)
Operating profits Π_i^1	$C_i^{fix} + \Pi_i^1 \ge \sum_s \Pi_{i,s}^0 t_s + (1-r)H_i \cdot B_i \cdot P^{CO_2}$	T	$K_i \geq 0$	$\forall i$	(5)
Investment cost recovery	$C_i^{inv} \cdot a_i \ge \Pi_i^1$	Т	$K_i^{new} \ge 0$	$\forall i \in I^{Invest}$	(6)
CO ₂ cap	$L^{CO2} \ge \sum_{i} \sum_{s} (\sum_{f \in F^{i}} \frac{1}{\eta_{i}} E_{f}) Q_{i,s} t_{s}$	Т	$P^{CO_2} \ge 0$		(7)
CO_2 certificate allocation	$L^{CO2} \ge (1-r)\sum_{i} (H_i \cdot B_i \cdot K_i)$	Т	$r \ge 0$		(8)

UNIVERSITÄT DUISBURG ESSEN

> Strong **distorting effect** of chosen allocation rule

House of **Energy Markets**

- > Due to contingent allocation: **distribution** of certificates **dependent** on **technology** choice
- > Ongoing work: distorting effect of retail tariffs on prosumers with PV-Battery systems

(first findings cf. Thomsen, Weber 2021)

26

В

allocation rule

for 2nd ETS period

Α

S

D

Policy Advice

Optimization results of a capacity expansion model often interpreted as competitive long-term equilibrium

- > In reality, repeatedly shocks occur i.e. unexpected developments, e.g., the energy crisis of 2022
- Rational investors anticipate possible shocks and the resulting risks for investments deterrent effect in case of risk aversion
- > Assessment of risks under different decarbonization instruments in a stylized setting
 - > Single shock and resulting impacts over 20 years similar to impulse-response function in control theory

UNIVERSITÄT

D U I S B U R G E S S E N

Botor, Böcker, Kallabis, Weber (2021): Information shocks and profitability risks for power plant investments – impacts of policy instruments Selected results

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Policy Advice

600

500

400

300

200

100

Decarbonization instruments affect equilibrium generation mix

CO₂ price drives coal out of the (greenfield) generation mix, **renewable support** mechanisms do **not**

- Decarbonization **instruments** affect **equilibrium** > **Demand shocks** have **highest impacts** (at same relative size)
 - No risk for renewables under infeed tariff
 - Other technologies affected by technology cost risk of RE Impact under FIT smaller – if FIT level is immediately adjusted
 - > CO₂ tax and quota induce intermediary risk profiles

Key insights regarding policy advice

- Optimization provides important insights for policy making in the energy and climate field
- Notably optimization enables the investigation of trade-offs

But:

- Overconfidence in optimization results is dangerous
- Optimization results depend on input parameters
 which are in turn subject to considerable uncertainty
- Typical policy problems are more complicated than classical optimization problems
 - Multiple stakeholders and levels of governance
 - Multiple objectives which are partly not easy to operationalize
- For good policy advice, the optimization tools are important, yet the process and the political discourse are equally relevant

Introduction	1
Scenarios: use and misuse	2
Stochastic Optimization: splendor and mirages	3
Policy Advice: simple answers and beyond	4
Ongoing work: coping with large systems with heterogenous components	5
Final remarks	6

Weber, Leisen, Böcker (2022): Combining rolling planning and Benders decomposition to solve large scale-electricity system models Motivation & general approach

Ongoing Work

- Increasing shares of renewables
 - More distributed generation, especially rooftop PV
 - Also distributed flexibilities, esp. electric vehicles and heat pumps
- Increasing requirements regarding temporal, spatial and technology details in capacity expansion models
 - Detailed modelling of operations required for an adequate model of optimal generation (and transmission) expansion
 - Large interconnected systems (e.g. entire Europe) to be considered
 - > Ordering of time steps to be maintained for storage operation
- > Standard energy system models reach their limits
 - Huge storage requirements and long run times despite progress in computing performance
 - Aggregation of time steps, areas or technologies is one possibility, yet induces aggregation errors
 - Decomposition of optimization problems alternative approach
- Objective: scalable approach to combine operations modelling based on rolling planning with long-term \nabla \hat{c}^{OPX(i)} capacity adjustments
 - House of Energy Markets & Finance

General approach IDILES

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Benders + Rolling Planning may be reformulated into a two-stage ordinary optimization problem

Weber, Leisen, Böcker (2022): Combining rolling planning and Benders decomposition to solve large scale-electricity system models Early application and results

Ongoing Work

Key methodological findings

- In the lower level, the sum of the objective functions of the rolling planning are applied
- At given starting points for each loop, the lower problems are linear and standard duality theory applies
- Yet a correction term is needed to eliminate the opportunity cost for reservoir filling, as these are no actual costs
- The correction term may be computed ex post yet not ex ante.
- The correction term is a convex function of capacity under the following conditions:
 - 1. Hydro-based generation in each loop is monotonously decreasing in capacities
 - 2. Terminal filling levels in each loop are correspondingly monotonously increasing in capacities
 - 3. The correction term is monotonously converging to zero with increasing capacities

First small scale application:

• DE, FR and PL for one exemplary month

33

Weber (2022): Heterogenous investors in energy system models Motivation & general approach

Ongoing Work

- Increasing shares of renewables
 - > More distributed generation, especially rooftop PV
 - Also distributed flexibilities, esp. electric vehicles and heat pumps
- Heterogenous investments and investors
 - Heterogeneity of preferences and technology availabilities
 - Also limited knowledge of planners/modellers
- Standard energy system models do not cope with these investors
 - Linear programs subject to penny switching
 - Differentiation by investment sites and technology types possible, yet yields large models and still unsatisfactory
- Objective: develop an alternative approach to cope with heterogenous investments
 - House of Energy Markets & Finance

- Discrete choice models:
 - Describe optimal choices under stochastic utility
 - Logit specification enables analytical formulations
- Standard stochastic utility formulation $U_i = V_i + \varepsilon_i$
- Corresponding choice probability

$$Prob_i = \frac{\exp(V_i)}{\exp(V_i) + 1} = 1 - \frac{1}{\exp(V_i) + 1}$$

 Expected (indirect) utility function: LogExpSum (cf. Small & Rosen 1981)

 $E[U_i] = \ln(\exp(V_i) + 1)$

- convex function
- mathematically tractable yet less supported by commercial solvers

Weber (2022): Heterogenous investors in energy system models Very early application and results

Ongoing Work

First implementation:

- Based on data from Poestges et al. (2019), publically available under zenodo: <u>https://zenodo.org/record/3674005</u>
 - CO₂ price 100 €/t CO₂
- Aggregation to five regions in Germany
- Investments in the following technologies:
 - CCGT
 - OCGT
 - PV
 - Wind onshore
- No grid restrictions

Energy Markets

Five randomly selected hours

First results:

Capacity PV								
Total R_50 R_AM R_EN R_TB R_TN								
Convex optimization	199.8	28.0	48.4	48.3	42.3	32.9		
Linear program	174.3	0	74.3	100.0	0	0		
Capacity wind								
		R_50	R_AM	R_EN	R_TB	R_TN		
Convex optimization	104.2	63.3	5.7	0.7	0.2	34.3		
Linear program	102.2	100.0	0	0	0	2.2		
Capacity CCGT								
Convex optimization	55.1							
Linear program	54.3							

DUISBURG ESSEN Open-Minded

UNIVERSITÄT

Introduction	1
Scenarios: use and misuse	2
Stochastic Optimization: splendor and mirages	3
Policy Advice: simple answers and beyond	4
Ongoing work: coping with large systems with heterogenous components	5
Final remarks	6

Final remarks

Veritas adequatio rei et intellectus

(attributed to) Aristote

An informal translation: Truth is the matching of things and thinking. An important addition for OR:

... and reflection on intertwined human decision making

This is getting even **more important** in a world with simultaneously **increasing complexity and knowledge**.

A tentative list of **hot topics in climate and energy for applied research** in that vein:

- Global and local hydrogen networks
- Decarbonization of heating
- Distributed flexibilities in electricity demand

Thank you for your attention!

Prof. Dr. Christoph Weber

Chair for Management Sciences and Energy Economics University Duisburg-Essen 45117 Essen

christoph.weber@uni-due.de

References

- Botor, B., Böcker, B., Kallabis, T., Weber, C., 2021. Information shocks and profitability risks for power plant investments impacts of policy instruments. Energy Economics 102, 105400. https://doi.org/10.1016/j.eneco.2021.105400.
- Felling, T., Felten, B., Osinski, P., Weber, C., 2023. Assessing Improved Price Zones in Europe: Flow-Based Market Coupling in Central Western Europe in Focus. EJ 44. https://doi.org/10.5547/01956574.44.6.tfel.
- Meibom, P., Barth, R., Hasche, B., Brand, H., Weber, C., O'Malley, M., 2011. Stochastic Optimization Model to Study the Operational Impacts of High Wind Penetrations in Ireland. IEEE Trans. Power Syst. 26, 1367–1379. https://doi.org/10.1109/TPWRS.2010.2070848.
- Meibom, P., Weber, C., Barth, R., Brand, H., 2009. Operational costs induced by fluctuating wind power production in Germany and Scandinavia. IET Renew. Power Gener. 3, 75. https://doi.org/10.1049/iet-rpg:20070075.
- Radek, J., Breder, M., Brunsch, D., Ostmeier, L., Voswinkel, S., Broll, R., Kramer, H., Meurer, F., Mikurda, J., Stein, T., Weber, C., 2022. Längerfristige Entwicklungspfade und Metastudie Klimaneutralität, Essen.

https://www.netzausbau.de/SharedDocs/Downloads/DE/Bedarfsermittlung/2035/NEP/NEP2035_NEMOVIII-3.pdf (accessed 28 August 2023).

- Schinke-Nendza, A., Loeper, F. von, Osinski, P., Schaumann, P., Schmidt, V., Weber, C., 2021. Probabilistic forecasting of photovoltaic power supply A hybrid approach using D-vine copulas to model spatial dependencies. Applied Energy 304, 117599. https://doi.org/10.1016/j.apenergy.2021.117599.
- Spiecker, S., Vogel, P., Weber, C., 2013. Evaluating interconnector investments in the north European electricity system considering fluctuating wind power penetration. Energy Economics 37, 114–127. https://doi.org/10.1016/j.eneco.2013.01.012.
- Spiecker, S., Vogel, P., Weber, C., 2013. Evaluating interconnector investments in the north European electricity system considering fluctuating wind power penetration. Energy Economics 37, 114–127. https://doi.org/10.1016/j.eneco.2013.01.012.
- Swider, D.J., Weber, C., 2007. The costs of wind's intermittency in Germany: application of a stochastic electricity market model. Euro. Trans. Electr. Power 17, 151– 172. https://doi.org/10.1002/etep.125.
- Taruttis, L., Weber, C., 2022. Estimating the impact of energy efficiency on housing prices in Germany: Does regional disparity matter? Energy Economics 105, 105750. https://doi.org/10.1016/j.eneco.2021.105750.
- Trepper, K., Bucksteeg, M., Weber, C., 2015. Market splitting in Germany New evidence from a three-stage numerical model of Europe. Energy Policy 87, 199–215. https://doi.org/10.1016/j.enpol.2015.08.016.

References - continued

Weber, C., 1998. Konsumentenverhalten und Umwelt: Eine empirische Analyse am Beispiel Energienutzung und Emissionen. Peter Lang, Frankfurt.

Weber, C., 2005. Uncertainty in the Electric Power Industry: Methods and Models for Decision Support: Methods and models for decision support. Springer, New York.

- Weber, C., 2022. Heterogenous investors in energy system models. Presentation at INFORMS Indianapolis, Oct. 18, 2022 and unpublished Working Paper
- Weber, C., 2022. Combining rolling planning and Benders decomposition to solve large scale-electricity system models. Presentation at Ohio State University Seminar, Oct. 19, 2022 and unpublished Working Paper
- Weber, C., Heidari, S., Bucksteeg, M., 2021. Coping with Uncertainties in the Electricity Sector Methods for Decisions of Different Scope. EEEP 10. https://doi.org/10.5547/2160-5890.10.1.cweb.
- Weber, C., Meibom, P., Barth, R., Brand, H., 2009. WILMAR: A stochastic programming tool to analyze the large-scale integration of wind energy, in: Kallrath, J., Pardalos, P.M., Rebennack, S., Scheidt, M. (Eds.), Optimization in the Energy Industry. Springer, Berlin, Heidelberg, pp. 437–460.
- Weber, C., Perrels, A., 2000. Modelling lifestyle effects on energy demand and related emissions. Energy Policy 28, 549–566. https://doi.org/10.1016/S0301-4215(00)00040-9.
- Weber, C., Vogel, P., 2014. Contingent certificate allocation rules and incentives for power plant investment and disinvestment. J Regul Econ 46, 292–317. https://doi.org/10.1007/s11149-014-9257-8.

1st level: Decisions on regulatory settings

