

Abschlussbericht

Zuwendungsempfänger:		Förderkennzeichen:		
Universität Duisburg-Ess	en	W045		
Vorhabensbezeichnung:				
	Pre-Enginee	ring Studie:		
Das flexible Kraftwerk der Zukunft				
Laufzeit des Vorhabens:				
	08.05.2017 -	- 30.09.2020		
im Rahmen des Klimaschutz	plans Nordrhein-Westf	alen		
andlungsfeld 3: Konventioneller Kraftwerkspark				
Strategie LR-KS1-S8:	trategie LR-KS1-S8: Modernisierung des Kraftwerksparks			
1aßnahme LR-KS1-M15: Effizienz- und Flexibilitätsoptimierung von Kraftwerken				

Projektpartner

Universität Duisburg-Essen

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik (LUAT) Leimkugelstraße 10 45141 Essen

Lehrstuhl für Energiewirtschaft (EWL) Berliner Platz 6 - 8 45127 Essen

Datum: 30.12.2020 Ort: Essen

Inhaltsverzeichnis

Abbildungsverzeichnis	
Tabellenverzeichnis	6
Abkürzungsverzeichnis	8
Kurzzusammenfassung	10
AP 1 Definition der technischen und ökonomischen Anforderungen an das Kraftwerk	der Zukunft 12
AP 1.1 Erstellung eines Lastenhefts für das Kraftwerkskonzept der Zukunft	
AP 1.2 Festlegung der Randbedingungen für die ökonomischen Betrachtungen	
AP 2 Zukünftiges Auslegungskonzept für GuD-Kraftwerke	15
AP 2.1 Modellierung eines Referenzprozesses für GuD-Kraftwerke	
AP 2.2 Erweiterung des Referenzprozesses für GuD-Kraftwerke um Kraft-Wärme-Kop	plung 19
AP 2.3 Anpassung der Auslegungsprämissen für GuD-Kraftwerke	21
AP 2.4 Integration von Speichern in den GuD-Prozess	24
AP 3 Zukünftige Auslegungskonzepte weiterer Technologien	
AP 3.1 Gasturbinenprozess	29
AP 3.2 Gasmotorenprozess	33
AP 3.3 Dampfkraftwerk	40
AP 4 Methodik und Szenarien zur wirtschaftlichen Bewertung	41
AP 4.1 Szenariengenerierung und -auswahl	
AP 4.2 Weiterentwicklung eines Tools zur optimierten Fahrweise und Ermittlung Deckungsbeiträge unter Berücksichtigung prozesstechnischer Nebenbedingungen	erzielbarer 50
AP 4.3 Wirtschaftlichkeitsanforderungen	56
AP 5 Techno-ökonomische-ökologische Bewertung zukünftiger Kraftwerkskonzepte	59
AP 5.1 Technische Jahressimulationen ausgewählter Kraftwerkskonzepte	61
AP 5.2 Ökonomische Jahressimulationen ausgewählter Kraftwerkskonzepte	75
5.3 Ökologische Ergebnisse und Gesamtbewertung ausgewählter Kraftwerkskonzepte	e 100
Gesamtbewertung	

Abbildungsverzeichnis

Abbildung 1: Fließbild des GuD-Prozesses (Referenzkraftwerk)
Abbildung 2: Betriebspunkte des Kraftwerks Fortuna im Jahr 2017 ohne Stillstandszeiten
Abbildung 3: Fließbild des GuD-Prozesses mit KWK
Abbildung 4: P-Q-Diagramm der Referenzanlage im KWK-Betrieb
Abbildung 5: GuD-Kraftwerk mit Abgasrückführung
Abbildung 6: Vergleich der Teillastwirkungsgrade unterschiedlicher Vorwärmstrategien
Abbildung 7: Fließbild GuD-Kraftwerk mit internem Thermischen Energiespeicher
(Flüssigsalzspeicher)
Abbildung 8: Integration eines Ruths-Speichers in den GuD-Prozess
Abbildung 9: Übersicht derzeitiger Gasturbinenaggregate
Abbildung 10: Schematische Darstellung des Gasturbinenprozesses der SGT-A65 mit zus.
Abhitzekessel (Links) und Gegenüberstellung des Lastverhaltens von Modell und Bibliothek (Rechts)
Abbildung 11: Modulares Flexibilitätsverhalten von 3 parallelbetriebenen Gasturbinen (Links) und P-
Q-Diagramm (Rechts)
Abbildung 12: Übersicht derzeitiger Gasmotorenaggregate
Abbildung 13: Lastabhängigkeit eines Motorenverbundkraftwerks
Abbildung 14: Schematische Abbildung des Großgasmotoren-BHKWs
Abbildung 15: Schematische Abbildung eines Großgasmotors im Kombikraftwerk sowie des WDKL
mit externer Kühlung (1) und mit der Verwendung von Heizkondensatoren (2)
Abbildung 16: Teillastverhalten des Großgasmotoren-Verbundkraftwerks (BHKW), des
Kombikraftwerks mit externer Kühlung (KK) und des Kombikraftwerks mit Heizkondensatoren (KK-
НеіКо)
Abbildung 17: Abbildung der Modellkette
Abbildung 18: Qualitative Parameterausprägungen der in diesem Projekt betrachteten Szenarien 42
Abbildung 19: Beobachtete, fundamental und simulierter Day-Ahead und IDA Preis 18.07.2016 49
Abbildung 20: Abbildung der handelbaren Preis-Mengen-Kombination über eine Stufenfunktion
(eigene Darstellung)
Abbildung 21: Einbindung des stochastischem 60h-Optimierungsmodells, sowie des IDC-Moduls in
die PreEngineering-Modellkette
Abbildung 22 Schematische Abbildung der berücksichtigten Zahlungsströme
Abbildung 23: Wirkungsgradkennlinien des Referenzkraftwerks und der Luftvorwärmung mit
linearisiertem und stückweise linearisiertem Verlauf
Abbildung 24: Geordnete Jahresdauerlinie und relative Abweichung des Brennstoffverbrauchs
zwischen den Simulationen des Referenzkraftwerks im Szenario A1 2025, Validierungsrechnung 64
Abbildung 25: Geordnete Jahresdauerlinie und relative Abweichung des Brennstoffverbrauchs
zwischen den Simulationen des Referenzkraftwerks mit KWK im Szenario A1 2025,
Validierungsrechnung

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Abbildung 26: Ausschnitt aus den Jahresdauerlinien des Brennstoffverbrauchs der KWK und KWK-	
TES-Modelle über alle Stützjahre im Szenario A1 67	
Abbildung 27: Geordnete Jahresdauerlinie und relative Abweichung des Brennstoffverbrauchs	
zwischen den Simulationen des Referenzkraftwerks mit KWK und Luftvorwärmung im Szenario A1	
2025, Validierungsrechnung	
Abbildung 28: Kennlinie des Brennstoffverbrauchs des 250MW-GuD-Modells und deren lineare	
Interpolation	
Abbildung 29: Kennlinie des Brennstoffverbrauchs der Gasturbine SGT-A65 und deren lineare	
Interpolation72	
Abbildung 30: Deckungsbeiträge und Kapitalwerte für Referenzkraftwerk GuD	1
Abbildung 31: Elektrischer Fahrplan des Referenzkraftwerks GuD für eine Beispielwoche im Szenario	
A1 im Jahr 2025 und 2050	
Abbildung 32: Deckungsbeiträge und Kapitalwerte Referenzkraftwerk GuD im KWK-Fall	ļ
Abbildung 33: Elektrischer Fahrplan und Wärmefahrplan des Referenzkraftwerks GuD im KWK-Fall	
für eine Beispielwoche im Jahr 2025, Szenario A1 80	J
Abbildung 34: Elektrischer Fahrplan und Wärmefahrplan des Referenzkraftwerks GuD im KWK-Fall	
für eine Beispielwoche im Jahr 2050, Szenario A1 80	J
Abbildung 35: Deckungsbeiträge und Kapitalwerte Thermischer Flüssigsalzspeicher (mit RK GuD im	
KWK-Fall)	
Abbildung 36: Elektrischer Fahrplan und Wärmefahrplan des Referenzkraftwerks GuD im KWK-Fall	
mit thermischen Salzspeicher für eine Beispielwoche in den Jahren 2025 und 2050, Szenario A1 82	
Abbildung 37: Deckungsbeiträge und Kapitalwerte GuD im KWK-Fall mit Luftvorwärmung	,
Abbildung 38: Elektrischer Fahrplan und Wärmefahrplan des GuD mit LuVo im KWK-Fall für eine	
Beispielwoche im Jahr 2025, Szenario A1	,
Abbildung 39: Elektrischer Fahrplan und Wärmefahrplan des GuD mit LuVo im KWK-Fall für eine	
Beispielwoche im Jahr 2050, Szenario A1	,
Abbildung 40: Deckungsbeiträge und Kapitalwerte für GuD-Anlage der 250 MW-Klasse	
Abbildung 41: Elektrischer Fahrplan der GuD der 250 MW-Klasse für eine Beispielwoche im Szenario	
A1 im Jahr 2025 und 2050	,
Abbildung 42: Deckungsbeiträge und Kapitalwerte für GuD-Anlage der 250 MW-Klasse im KWK-Fall	
	,
Abbildung 43: Deckungsbeiträge und Kapitalwerte für das Gasmotorenkraftwerk mit 29 Gasmotoren	
	J
Abbildung 44: Elektrischer Fahrplan des Gasmotorenkraftwerks für eine Beispielwoche im Szenario	
A1 im Jahr 2025 und 2050	
Abbildung 45: Deckungsbeiträge und Kapitalwerte für das Gasmotorenkraftwerk mit 29 Gasmotoren	
im KWK-Fall	
Abbildung 46: Elektrischer Fahrplan und Wärmefahrplan des Gasmotorenkraftwerks im KWK-Fall für	
eine Beispielwoche im Jahr 2025, Szenario A1	

Abbildung 47: Elektrischer Fahrplan und Wärmefahrplan des Gasmotorenkraftwerks im KWK-Fall f	ür
eine Beispielwoche im Jahr 2050, Szenario A1	94
Abbildung 48: Deckungsbeiträge und Kapitalwerte für die Gasturbine	95
Abbildung 49: Elektrischer Fahrplan der Gasturbine für eine Beispielwoche im Szenario A1 im Jahr	
2025 und 2050	96
Abbildung 50: Deckungsbeiträge und Kapitalwerte für die Gasturbine	97
Abbildung 51: Elektrischer Fahrplan und Wärmefahrplan der Gasturbine im KWK-Fall für eine	
Beispielwoche im Jahr 2025, Szenario A1	98
Abbildung 52: Elektrischer Fahrplan und Wärmefahrplan der Gasturbine im KWK-Fall für eine	
Beispielwoche im Jahr 2050, Szenario A1	. 99

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Tabellenverzeichnis

Tabelle 1: Übersicht der GuD-Modelle aus AP 2	. 15
Tabelle 2: Betriebsparameter des Referenzkraftwerks (elektrisch)	. 16
Tabelle 3: Prozessparameter des 250 MW-GuD	. 21
Tabelle 4: Speicherwirkungsgrade des Flüssigsalzspeichers	. 26
Tabelle 5: Speicherwirkungsgrade des Ruths-Speichers	. 26
Tabelle 6: Vergleich der Speichertechnologien	. 26
Tabelle 7: Thermodynamische Modelle aus Arbeitspaket 3	. 28
Tabelle 8: Nennlastdaten der SGT-A65	. 30
Tabelle 9: Simulationsergebnisse der Betriebsdaten je Großgasmotor	. 36
Tabelle 10: Betriebsdaten des Verbundkraftwerks unter Berücksichtigung der jeweiligen	
Konfigurationen in Volllast (Auslegung für 20 Großgasmotoren)	. 39
Tabelle 11: Annahmen zu Stromverbrauch und Brennstoffkosten in Szenarien und Stützjahren	. 45
Tabelle 12: Ergebnisse E2M2s Szenarien A1 und A2	. 46
Tabelle 13: Ergebnisse E2M2s Szenarien B und C	. 46
Tabelle 14: Ergebnisse E2M2s Szenario N	. 47
Tabelle 15: Baseload-Preise [€/MWh]	. 49
Tabelle 16: Standardabweichung der simulierten Day-Ahead-Preise	. 49
Tabelle 17: Anzahl Stunden mit simulierten Day-Ahead-Preisen von null oder geringer	. 49
Tabelle 18: Beschreibende Eigenschaften eines repräsentativen Portfolios 2017 (größten 19	
Fernwärmenetze Deutschlands, Rundung auf ganze Stellen)	. 53
Tabelle 19: Vergleichsportfolio zur Berechnung von Deckungsbeiträgen	. 55
Tabelle 20: Investitionsausgaben relevanter Gastechnologien	. 56
Tabelle 21: Betriebs- und Wartungskosten relevanter Gastechnologien (in % der	
Investitionsausgaben)	. 57
Tabelle 22: Symbolverzeichnis der Investitionsrechnung	. 58
Tabelle 23: Überblick über die Kraftwerksmodelle der Pre-Engineering Studie	. 59
Tabelle 24: Validierungsergebnisse des Referenzkraftwerks	. 64
Tabelle 25: Validierungsergebnisse des Referenzkraftwerks mit KWK	. 66
Tabelle 26: Validierungsergebnisse des Referenzkraftwerks mit KWK und TES	. 67
Tabelle 27: Validierungsergebnisse des Referenzkraftwerks mit KWK und Luftvorwärmung	. 69
Tabelle 28: Validierungsergebnisse des Modells des GuD der 250MW-Klasse	. 70
Tabelle 29: Validierungsergebnisse des Modells des GuD der 250MW-Klasse mit KWK	. 71
Tabelle 30: Validierungsergebnisse des Gasturbinenkraftwerks	. 72
Tabelle 31: Validierungsergebnisse des Gasturbinenkraftwerks mit KWK	. 73
Tabelle 32: Validierungsergebnisse des Gasmotorenkraftwerks	. 74
Tabelle 33: Validierungsergebnisse des Gasmotorenkraftwerks mit KWK	. 74
Tabelle 34: Laufübersicht Jahressimulationen	. 75
Tabelle 35: Betriebskennzahlen Referenzkraftwerk GuD	. 77
Tabelle 36: Betriebskennzahlen Referenzkraftwerk GuD im KWK-Fall	. 79

Tabelle 37: Betriebskennzahlen Thermischer Flüssigsalzspeicher (mit RK GuD im KWK-Fall)
Tabelle 38: Betriebskennzahlen GuD im KWK-Fall mit Luftvorwärmung
Tabelle 39: Betriebskennzahlen GuD 250 MW 87
Tabelle 40: Betriebskennzahlen GuD 250 MW im KWK-Fall
Tabelle 41: Betriebskennzahlen Gasmotoren
Tabelle 42: Betriebskennzahlen Gasmotoren im KWK-Fall 93
Tabelle 43: Betriebskennzahlen Gasturbine 96
Tabelle 44: Betriebskennzahlen Gasturbine im KWK-Fall
Tabelle 45: Emissionsintensität der deutschen Stromerzeugung (ohne Berücksichtigung von Im- und
Export) in t CO ₂ /MWh _{el} pro Szenario und Stützjahr100
Tabelle 46: Emissionsintensität (stromseitig) je betrachteter Technologie in t CO ₂ /MWh _{el}
Tabelle 47 Prozentuale Emissionserhöhung durch die betrachteten KWK-Technologien zum
jeweiligen Vergleichsportfolio102

Abkürzungsverzeichnis

а	Jahr
AGR	Abgasrückführung
AH	Außenhandel
AP	Arbeitspaket
BHKW	Blockheizkraftwerke
CCGT	combined cycle gasturbine (GuD)
CCS	Carbon Capture and Storage
СНР	combined heat and power (KWK)
СОР	coefficient of performance
DA	
DAH	
DAP	
DT	
E2M2s	Europäisches Energiemarktmodell
EE	erneuerbare Energien
EEG	Erneuerbare-Energien-Gesetz
EEX	European Energy Exchange
EGR	exhaust gas recirculation (Abgasrückführung)
el	elektrisch
EPEX	European Power Exchange
EWL	Lehrstuhl für Energiewirtschaft
Gen	Generator
GT	Gasturbine
GuD	Gas- und Dampfkraftwerk
HD	Hochdruckstufe
HeiKo	Heizkondensator
НК	Heizkessel
нкм	Heizkraftwerk
НТ	Hochtemperatur
HYBRIDSPOT	kombiniert fundamental-stochastisches Stromkurzfristmodell
	Intraday
	kontinuierlicher Intradavbandel
	Intraday-Markt
	Intraday-Preis
	International Energy Agency
	iniet guide vane (Leitschautelverstellung)
IGV	inlet guide vane (Leitschaufelverstellung) Kombikraftwerk
IGV KK	inlet guide vane (Leitschaufelverstellung)
IGV KK Kond	
IEA IGV KK Kond KWK	
IEA IGV KK Kond KWK KWTK	
IEAIGV IGVKKKond KwKKWK KWTKLT	
IEAIGV IGVKKKond KWKKWKKWTKLT LUATLUAT	
IEA IGV KK Kond KWK KWTK LT LUAT LUAT LuVo	
IEA IGV KK Kond KWK KWTK LT LUAT LUAT LUVO MD	Inlet guide vane (Leitschaufelverstellung) Kombikraftwerk Kondensator Kraft-Wärme-Kopplung Kraftwerkstechnisches Kolloquium Niedertemperatur Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Luftvorwärmung
IEAIGV IGVKKKond KWKKWK KWTKLT LUATLUAT LUVOMDND	Inlet guide vane (Leitschaufelverstellung) Kombikraftwerk Kondensator Kraft-Wärme-Kopplung Kraftwerkstechnisches Kolloquium Niedertemperatur Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Luftvorwärmung Mitteldruckstufe

OCGT	open cycle gasturbine (GT)
OptKWS	Optimierungstool für den Kraftwerkssystemeinsatz
Ρ	Leistung
P2H	Power-to-Heat
ParFuM	Parsimonious Fundamental Model
PV	Photovoltaik
RKW	Referenzkraftwerk
RMSE	root mean square error
SK	Steinkohle
TES	thermischer Energiespeicher
th	thermisch
THG	Treibhausgas
TYNDP	Ten-Year Network Development Plan
ÜH	Überhitzer
VD	Verdampfer
VW	Vorwärmer
WDKL	Wasser- Dampfkreislauf
WEO	
WS	Wärmespeicher

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Kurzzusammenfassung

Durch den starken Zubau bei den fluktuierenden Erneuerbaren Energien haben sich die Randbedingungen für den Einsatz konventioneller Kraftwerke in den letzten Jahren signifikant verändert. Die Residuallast ist heutzutage sehr viel volatiler als früher. Mittelfristig werden hochflexible konventionelle Kraftwerke auf Basis fossiler Energiequellen zur Gewährleistung der Versorgungssicherheit benötigt. Diese hoch-flexiblen konventionellen Kraftwerke werden dabei in einer Übergangszeit bis zum Erreichen der Emissionsreduktionsziele das Rückgrat für die deutsche und europäische Stromversorgung darstellen, einen weiteren Ausbau der Erneuerbaren Energien partnerschaftlich unterstützen und die damit verbundene Senkung der CO₂-Emissionen im Stromsektor ermöglichen.

Seit dem Beginn der Energiewende und auch noch aktuell stellen die zur Verfügung stehenden Bestandskraftwerke noch ein ausreichend großes Maß an Flexibilität zur Verfügung, um die schwankende Residuallast zu jedem Zeitpunkt zu decken und das geforderte Gleichgewicht zwischen Produktion und Verbrauch sicherzustellen. Für die Zukunft lassen sich jedoch mehrere aufkommende Herausforderungen absehen, die das Flexibilitätsangebot sinken und den Flexibilitätsbedarf steigen lassen werden. Im Rahmen dieser Studie werden die Herausforderungen an den flexiblen Kraftwerkspark der Zukunft herausgearbeitet und anhand verschiedener Modelle aktuelle Auslegungsprämissen und Zielgrößen für zukünftige Kraftwerkskonzepte auf Basis CO₂-armer Erdgasbefeuerung erarbeitet.

In diesem Projekt werden Gaskraftwerke in stationären Simulationsmodellen implementiert, diese werden dann durch Flexibilisierungsmaßnahmen erweitert, um im Anschluss technisch, ökonomisch und ökologisch gegenübergestellt zu werden. Im Detail werden hier folgende aktuelle Referenztechnologien betrachtet:

- GuD-Kraftwerk mit KWK, 600 MW_{el}, 300 MW_{th}
- Modulares Gasmotorenverbundkraftwerk mit KWK, hier 190 MW_{el}, 192 MW_{th} •
- Gasturbinenkraftwerk, ab 65 MW_{el}

Neben der Betrachtung von gasbefeuerten Technologien war ursprünglich zum Vergleich die Abbildung eines Steinkohlekraftwerks geplant, die Modellierung wurde nach den Ergebnissen der Kohlekommissionstagung 2019 eingestellt.

Zur Flexibilisierung der Anlagen werden folgende Maßnahmen implementiert:

GuD-Kraftwerk:

- Kleinere Anlagengröße, 250 MW_{el}, 160 MW_{th}
- Abgasrückführung bzw. Ansaugluftvorwärmung
- Integration thermischer Energiespeicher in den Dampfkreislauf
- Sektorenkopplung durch Integration einer Methanolsynthese (Power-to-X)

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Gasmotorenverbundkraftwerk:

- Integration eines Dampfturbinenkreislaufs
- Rein elektrischer Betrieb •

Gasturbinenkraftwerk:

KWK

Durch die Implementierten Maßnahmen werden die Flexibilitätsparameter der Anlagen gesteigert. Im Projekt werden positive Einflüsse auf Betriebsbandbreite und Teillastwirkungsgrade der Anlagen aufgezeigt.

Die entwickelten Kraftwerks- und Speichertechnologien werden für die zukünftigen Stützjahre 2025, 2035 und 2050 auf ihre Wirtschaftlichkeit hin untersucht. Hierzu werden konsistente Zukunftsszenarien bezüglich des Marktumfeldes der Technologien in diesen Jahren entwickelt. Mithilfe einer stochastischen Simulation der Kraftwerksfahrweisen mit und ohne Einspeisung in ein lokales Wärmenetz wird die absolute und relative Wirtschaftlichkeit angesichts der gegebenen Marktumstände in den jeweiligen Szenarien bestimmt. Hierbei wird mit Szenario N auch ein Szenario betrachtet, in dem bis zum Jahr 2050 in Deutschland keine CO₂-Emissionen mehr vorliegen.

Im Ergebnis lassen sich für die verschiedenen Technologien gemeinsame Trends ableiten, wobei die individuelle Wirtschaftlichkeit je nach Technologie und Szenario jedoch stark divergiert. Bis zum Jahr 2050 ist in allen modellierten Zukunftsentwicklungen von einer sinkenden Zahl an Volllaststunden auszugehen. Sowohl für rein elektrische als auch für KWK-Technologien verliert auch der Teillastbetrieb im Zeitverlauf an Bedeutung. Während große, sehr effiziente GuD-Technologien auch bei großer Emissionsminderung im System und hohen CO₂-Preisen noch wirtschaftlich operieren können, ist dies bei kleineren, weniger effizienten GuD-Anlagen nicht gegeben. Die Wirtschaftlichkeit von Gasturbinen ist nur für die rein elektrische Anwendung gegeben, Gasturbinen in KWK-Anwendungen können ihre Investitionskosten nicht erwirtschaften. Die Wirtschaftlichkeit von Gasmotorenkraftwerken hingegen ist für die rein elektrische Anwendung nicht gegeben. Gasmotorenkraftwerke im KWK-Betrieb arbeiten jedoch im Vergleich zu GuD-Lösungen relativ wirtschaftlich. Aus ökologischer Sicht sind jedoch alle betrachteten, mit konventionellem Erdgas betriebenen Technologien langfristig zu emissionsintensiv, um mit den angestrebten Klimazielen von 80-100 % Reduktion der Treibhausgase (ggü. dem Wert von 1990) bis 2050 kompatibel zu sein. Daher sollte künftige Forschung die Untersuchung von emissionsneutralen Verbrennungstechnologien, insbesondere die Nutzung von regenerativ erzeugten Synthesegasen stärker in den Fokus nehmen.

AP 1 Definition der technischen und ökonomischen Anforderungen an das Kraftwerk der 7ukunft

Im Rahmen des Forschungsprojektes Pre-Engineering Studie: Das flexible Kraftwerk der Zukunft bestand die Aufgabenstellung der Projektpartner, dem Lehrstuhl für Energiewirtschaft und dem Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik der Universität Duisburg-Essen, im Arbeitspaket 1 und der ersten Projektphase darin, ein gemeinsames Verständnis der Fragestellungen und damit der Schnittstellen der beteiligten Partner zu erarbeiten. Im Zuge dessen sollten technische und ökonomische Randbedingungen zukünftiger Kraftwerkskonzepte abgeschätzt werden. Anhand dieser Randbedingungen wurden, die im weiteren Verlauf des Projekts untersuchten Konzepte miteinander verglichen und bewertet. Arbeitspaket 1 war demzufolge durch einen intensiven Austausch der Projektpartner geprägt. Zum schnellen, einfachen und sicheren Informationsaustausch wurde auf der Plattform "Sciebo – die Campuscloud " ein gemeinsamer Projektordner angelegt.

AP 1.1 Erstellung eines Lastenhefts für das Kraftwerkskonzept der Zukunft

In diesem Arbeitsschritt wurden die maßgeblichen Bewertungsgrößen der zukünftig vorstellbaren Kraftwerkskonzepte identifiziert, sowie erste Zielwerte für diese Bewertungsgrößen abgeschätzt. Die Zielwerte wurden dann in Form eines Lastenhefts aufgearbeitet und zusammengefasst, welche als Basis für die technische Betrachtung in Arbeitspaket 2 und Arbeitspaket 3 dienten. Des Weiteren dienten die Zielwerte als Grundlage für die Festlegung der ökonomischen Randbedingungen in Arbeitspaket 1.2.

Als technische und ökonomische Bewertungsgrößen sind unter anderem folgende Kennziffern aufzuführen:

- Installierte Blockleistung [MW_{el}]
- Erwartete Volllaststunden pro Jahr [h/a]
- Erwartete Betriebsstunden während der Lebensdauer [h]
- Erforderliche Flexibilitätsparameter
 - Mindestlast [% von P_{netto}] 0
 - Laständerungsgeschwindigkeit [%/min] 0
 - Kosten und Dauer von An- und Abfahrvorgängen [€ bzw. Minuten] 0
- Wirkungsgrad und Nutzungsgrad [%]
- Spezifische Investitionskosten [€/kW_{el}]

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

AP 1.2 Festlegung der Randbedingungen für die ökonomischen Betrachtungen

In diesem Teilarbeitspaket wurden zu Beginn des Projektes der Rahmen der Untersuchung, d.h. die Auswahl der untersuchten Jahre und gewählten Inputannahmen bezüglich Ausbaupfaden von erneuerbaren Energien, Emissionszielen, Brennstoffpreisen sowie verbleibender Kraftwerkskapazitäten konventioneller Technologien in enger Zusammenarbeit zwischen LUAT und EWL festgelegt.

Als geeignete Szenarien-Jahre für die Investitionsbewertung der flexiblen Kraftwerkstechnologien der Zukunft werden 2025, 2035 und 2050 gewählt. Hierdurch wird die Analyse der Wirtschaftlichkeit der untersuchten Kraftwerkstypen zu verschiedenen Zeitpunkten der Energiewende ermöglicht. Das letzte betrachtete Jahr, 2050, entspricht hierbei dem Zieljahr des Energiekonzepts der Bundesregierung (2010)¹, welches im Erneuerbare-Energien-Gesetz (EEG) 2012² fixiert wurde. Bis 2050 soll demnach eine Steigerung des Anteils erneuerbarer Energien an der deutschen Stromerzeugung auf 80 Prozent erfolgen. Der Klimaschutzplan 2050 der Bundesregierung (2016)³ setzt für das Zieljahr 2050 außerdem das Ziel der gesamtvolkswirtschaftlichen Reduktion von Treibhausgasen um mindestens 80 Prozent gegenüber dem Niveau von 1990, welches den meisten der in Arbeitspaket 4 definierten Szenarien zugrunde liegt.

Das Jahr 2025 entspricht dem mutmaßlich frühsten möglichen Jahr, zu dem ein Kraftwerk, wie es in den Arbeitspaketen 2 und 3 entwickelt wird, nach technischer Entwicklungsphase im Anschluss an die Veröffentlichung dieser Studie zur Teilnahme an den Energiemärkten als Investitionsalternative zur Verfügung stehen kann. Das Jahr 2035 ist schließlich aufgrund der sich verstärkenden Emissionsminderungsziele im deutschen Stromsektor und einer erwarteten Abnahme der Stromproduktion aus Stein- und Braunkohle, bei gleichzeitig steigender Grundlast aufgrund einer Zunahme von Elektromobilität und Wärmebereitstellung aus elektrischer Energie, ein weiterer wichtiger Zeitpunkt für die zwischenzeitliche Bewertung neuer, flexibler und grundlastfähiger Kraftwerkskapazitäten. Die Methodik der Übersetzung aller Stützjahrergebnisse (2025, 2035, 2050) in die wirtschaftliche Bewertung einzelner Kraftwerkstechnologien wird untenstehend bei den Ergebnissen des Arbeitspaketes 4.3 beschrieben, die Methodik der Ergebnisbestimmung innerhalb der einzelnen Stützjahre selbst bei den Ergebnissen des Arbeitspaketes 4.2.

Während des Projektes gab es weitere Anpassungen politischer Rahmenbedingungen, die ebenso explizit Eingang in den Szenariorahmen dieses Projektes finden. Zum einen fand der politische Willensbildungsprozess bezüglich eines Ausstiegs Deutschlands aus den emissionsintensiven Kohletechnologien statt, dieser wurde durch die Ergebnisse der Kommission für Wachstum,

¹ Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung (BMWi, BMU, 2010)

² Gesetz für den Vorrang Erneuerbarer Energien (Bundesregierung, 2012)

³ Klimaschutzplan 2050 – Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung (Bundesregierung, 2016)

Strukturwandel und Beschäftigung⁴ ("Kohlekommission") 2018 konkretisiert und mündete im Kohleausstiegsgesetz 2020.⁵ Ein hiermit kompatibler Kohleausstiegsplan wird folglich allen in Arbeitspaket 4.1 definierten Szenarien dieses Projektes zugrunde gelegt und beeinflusst auch die Auswahl der in Arbeitspaket 5 genauer betrachteten Kraftwerkstechnologien, da auf die ökonomische Betrachtung von Steinkohleanlagen im Gegensatz zur ursprünglichen Projektplanung verzichtet wird. Weitere wichtige Änderungen betreffen die Zielsetzung der Treibhausgasneutralität Deutschlands bis 2050, welche zwar erst zum Ende des Projektes in Form eines Gesetzentwurfs zur Änderung des Erneuerbare-Energien-Gesetzes mit noch ausstehendem Beschluss im Jahr 2021 konkretisiert wurde⁶, jedoch als diskutiertes Ziel schon zur Projektlaufzeit die Miteinbeziehung eines zusätzlichen treibhausgasneutralen Szenarios motivierte.

Die identifizierten Annahmen für die wesentlichen Einflussgrößen werden zur Vermeidung von Dopplungen und aufgrund der inhaltlichen Zusammenhänge im untenstehenden Abschnitt zu Teilarbeitspaket 4.1 vorgestellt.

⁴ https://www.bmu.de/themen/klima-energie/klimaschutz/kommission-wachstum-strukturwandel-undbeschaeftigung/

⁵ Gesetz zur Reduzierung und zur Beendigung der Kohleverstromung und zur Änderung weiterer Gesetze (Kohleausstiegsgesetz) 2020: https://www.bmwi.de/Redaktion/DE/Artikel/Service/kohleausstiegsgesetz.html

⁶ Gesetzentwurf zur Änderung des Erneuerbare-Energien-Gesetzes und weiterer energierechtlicher Vorschriften https://www.bmwi.de/Redaktion/DE/Artikel/Service/Gesetzesvorhaben/gesetz-zur-aenderung-(23.09.2020) des-eeg-und-weiterer-energierechtlicher-vorschriften.html

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

AP 2 Zukünftiges Auslegungskonzept für GuD-Kraftwerke

In Arbeitspaket 2 sollten Konzepte zur Auslegung zukünftiger GuD-Anlagen entwickelt werden. Hierzu wurde zunächst ein geeignetes Referenzkraftwerk gewählt und modelliert, welches den aktuellen Stand der Technik darstellt. Im Anschluss daran wurden unterschiedliche Konzepte zur Flexibilisierung der Technologie erarbeitet und in Arbeitspaket 5 anhand des Referenzprozesses bewertet.

Anfang des Jahres 2018 wurde am Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik eine Bibliothek für Betriebsdaten von Gasturbinen und einer für Gasmotoren der ENEXSA GmbH angeschafft. Die Verwendung dieser Bibliothek bietet einige Vorteile in der Simulation von Energiesystemen, die auf eine Gasturbine oder einen Gasmotor aufbauen. Die in dieser Studie entwickelten GuD- und Gasturbinenmodelle wurden daher unter Verwendung der ENEXSA GT-Bibliothek implementiert, Gasmotorenmodelle wurden mit der ENEXSA Gasmotoren-Bibliothek modelliert. Die Bibliotheken arbeiten in Verbindung mit dem Wärmekreislaufprogramm EBSILON®Professional (Ebsilon) von STEAG Energy Services GmbH, Essen. Eine kontinuierliche Zusammenarbeit der ENEXSA GmbH mit Anlagenherstellern garantiert eine wertvolle und "lebendige" Quelle für Anlagen-Leistungsdaten.

Eine Übersicht über alle im Arbeitspaket 2 entwickelten Modelle ist in **Tabelle 1** zu sehen.

Nr.	Anwendung	el. Leistung [MW]	th. Leistung [MW]	Min. Last [%]
1	Referenzkraftwerk nach Lausward Fortuna	501		56
1	(rein elektrisch)	221	-	50
2	Referenzkraftwerk nach Lausward Fortuna	501	300	56
	(inkl. KWK)	551	300	50
3	Referenzkraftwerk mit thermischem	591	300	56
	Energiespeicher - Salz	603 temporär	300	54 temporär
4	Referenzkraftwerk mit thermischem	591	300	56
	Energiespeicher - Ruths-Speicher	603 temporär	500	54 temporär
5	Referenzkraftwerk mit Methanolsynthese	591	300	0
	Referenzkraftwerk mit Ansaugluftvorwärmung			
6	(unterschiedliche Konzepte)	582 - 591	300	45 - 54
7	250 MW-Klasse	259	161	55
8	250 MW-Klasse mit Ansaugluftvorwärmung	259	161	52

Tabelle 1: Übersicht der GuD-Modelle aus AP 2

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

AP 2.1 Modellierung eines Referenzprozesses für GuD-Kraftwerke

Als Referenzanlage sollte für die Pre-Engineering Studie ein möglichst modernes GuD-Kraftwerk modelliert werden, welches den aktuellen Stand der Technik darstellt. Zum Zeitpunkt der Suche galt das GuD-Kraftwerk Lausward Block F (Fortuna) als das effizienteste seiner Art. Aufgrund einer guten Datenlage zum Kraftwerk am Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik und der Aktualität der Anlage wurde diese als Referenz für das Projekt gewählt.

Beim Block F des Kraftwerks Lausward wird die Gasturbine SGT5-8000H des Herstellers Siemens eingesetzt. Auch diese findet sich, in unterschiedlichen Entwicklungsstufen, in der ENEXSA-GT-Bibliothek wieder. So setzt sich das Referenzkraftwerk zusammen aus der genannten Gasturbine, der ebenfalls Siemens hergestellten Dampfturbine SST5-5000 von sowie einem Dreidruckabhitzedampferzeuger mit Zwischenüberhitzung und Durchflussprinzip (BENSON-Stufe) im Hochdruckteil. Die wichtigsten Kenngrößen des Referenzprozesses sind in Tabelle 2 zusammengefasst.

Tabelle 2: Betriebsparameter des Referenzkraftwerks (elektrisch)

Prozessgrößen		
Nennlast (Netto)	591 MW	
	600 °C,	170 bar
Frischdampfparameter	600 °C,	35 bar
	300 °C,	5 bar
Kondensatordruck	30 mbar	
Nennlast Gasturbine (Netto)	381 MW	
Abgastemperatur (Nennlast)	628 °C	
Abgasmassenstrom (Nennlast)	840 kg/s	

Der Abhitzekessel wurde hier in einer vereinfachten Form modelliert, da zunächst grundlegende thermodynamische Untersuchungen in stationären Lastpunkten erfolgen sollen. Einspritzkühlung sowie Anzapfströme zur Wellenabdichtung der Dampfturbine werden nicht abgebildet, wodurch sich der Kessel zusammenfassen lässt zu je drei Vorwärmern, drei Verdampfern (Benson in HD, je ein Zwangsumlauf in MD und ND), drei Überhitzern sowie einem Zwischenüberhitzer. Die Verschaltung der einzelnen Wärmeübertrager im Dampfkreislauf ist vereinfacht in Abbildung 1 dargestellt. Die Modellierung in Ebsilon ist dem GuD-Modell in ⁷ nachempfunden.

⁷ BLUMBERG, Timo, et al. Comparative exergoeconomic evaluation of the latest generation of combined-cycle power plants. Energy Conversion and Management, 2017, 153. Jg., S. 616-626.

Abbildung 1: Fließbild des GuD-Prozesses (Referenzkraftwerk)

In Gaskraftwerken ist die Mindestlast typischerweise durch Emissionsgrenzwerte der Gasturbine beschränkt⁸. Bei kombinierten Gas- und Dampfkraftwerken verschiebt sich in der Teillast der Anteil an der gesamten erzeugten elektrischen Energie teilweise in Richtung Dampfprozess. Daraus resultiert bei weiterhin größtmöglicher Ausnutzung der Abgasenergie eine erhöhte Mindestlast im Vergleich zum reinen Gasturbinenkraftwerk. Bei dem hier untersuchten GuD liefert die Gasturbine in Volllast 65 % der gesamten Nettoleistung, während bei einer Teillast von 57 % nur noch 55 % der Gesamtlast durch die Gasturbine bereitgestellt werden.

Betrachtet man die Betriebszeiten des GuD-Kraftwerks Lausward im Jahr 2017, unter Vernachlässigung von Stillstandszeiten, sind drei häufig angefahrene Lastpunkte zu erkennen (**Abbildung 2**). Diese sind zum einen die Volllast, sowie zum anderen zwei Teillastbereiche. Der höhere der beiden Teillastbereiche bewegt sich um ca. 340 MW, was einer Teillast von ca. 55-57 % entspricht, der niedrigere Bereich liegt bei ca. 210 MW und entspricht einer Teillast von ca. 34-36 %. Der Wert der niedrigeren Teillast entspricht der vor Betriebsbeginn vom Hersteller Siemens angekündigten Mindestlast durch die neu eingeführte "Clean-Range"-Technologie⁹. Da diese Technologie nicht dem Stand der Technik entspricht und zudem das Kraftwerk längere Betriebszeiten im höheren der Teillastpunkte aufweist, wird Punkt 2 mit 55-57 % als Mindestlast für das Referenzkraftwerk in der Pre-Engineering Studie gewählt.

⁸ PAVRI, Roointon; MOORE, Gerald D. Gas turbine emissions and control. General Electric Report No. GER-4211, 2001.

⁹ BUCHSBAUM, Lee; 2016. Dusseldorf's Lausward Power Plant Fortuna Unit Wins POWER's Highest Award. In: POWER magazine 08/2016

LEHRSTUHL FÜR **ENERGIEWIRTSCHAFT** PROF. DR. CHRISTOPH WEBER

Abbildung 2: Betriebspunkte des Kraftwerks Fortuna im Jahr 2017 ohne Stillstandszeiten¹⁰

Zur Leistungsregelung von Gasturbinen werden die vorderen Leitschaufeln des Verdichters gegen die Nennlastausrichtung verdreht und so der Luftmassenstrom durch den Verdichter reduziert. Im Gegensatz zur ähnlichen Regelung beim Ottomotor durch eine Drosselklappe, sind der Gasturbine hier Grenzen gesetzt. Werden die Leitschaufeln zu weit geschlossen, kann es zum Strömungsabriss im Verdichter kommen und die Anlage fährt ins so genannte Pumpen, was zu schweren Schäden führen kann. Unterhalb dieser Grenze kann die Leistung der Gasturbine weiter reduziert werden, in dem das Verbrennungsluftverhältnis angepasst wird, diese Art der Regelung führt jedoch schnell zu unzulässigen Schadstoffemissionen und sollte daher vermieden werden. Die zuvor gewählte Teillast von 57 % entspricht einer Teillast der Gasturbine von ca. 50 %, welches wiederum der Regelungsgrenze der SGT5-8000H durch Leitschaufelverstellung entspricht. Die Wahl des Mindestlastpunktes wird dadurch noch einmal bestätigt.

¹⁰ ENTSO-E Transparency Platform: https://entsoe.zendesk.com/hc/en-us/articles/115000173266-Overviewof-data-download-options-on-Transparency-Platform, besucht am 05.02.2018

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

AP 2.2 Erweiterung des Referenzprozesses für GuD-Kraftwerke um Kraft-Wärme-Kopplung

Das GuD-Kraftwerk Fortuna, Lausward ist als KWK-Anlage ausgeführt, neben der hervorragenden Effizienz der Stromerzeugung ein weiterer Grund warum das Kraftwerk in dieser Studie als Referenz gewählt wurde. Durch zwei Anzapfpunkte an der Niederdruckturbine sowie einem an der Überstromleitung der Mitteldruckturbine mit Druckhalteklappe, können beim Kraftwerk Fortuna bis zu 300 MW_{th} Fernwärme aus dem Prozess ausgekoppelt werden. Das vereinfachte Schaltbild der Anlage mit KWK ist in Abbildung 3 dargestellt.

Abbildung 3: Fließbild des GuD-Prozesses mit KWK

Bei der Kraft-Wärme-Kopplung wird auf drei verschiedenen Druckstufen Dampf aus dem Prozess ausgekoppelt, um den Fernwärmekreislauf zu speisen. In der Schaltung der GuD-Anlage wird hierzu lediglich eine Druckhalteklappe in der Überstromleitung der MD-Turbine, hinter der Anzapfung für die Fernwärme installiert, um hier in jedem Betriebspunkt einen Druck von mindestens 3,2 bar halten zu können. Wird keine Fernwärme ausgekoppelt entsprechen die Betriebsdaten des Modells dem Referenzprozess und damit der Anlage bei reiner Stromerzeugung.

Abbildung 4 zeigt den Betriebsbereich des modellierten Kraftwerks. Die Grenzen dieses Betriebsbereichs werden im Diagramm durch Ausgleichsgeraden hervorgehoben. Diese hier verdeutlichten Grenzen wurden als Parameterset an den Projektpartner übergeben und in dessen Optimierungsmodelle integriert.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Abbildung 4: P-Q-Diagramm der Referenzanlage im KWK-Betrieb

AP 2.3 Anpassung der Auslegungsprämissen für GuD-Kraftwerke

Ziel von Arbeitspaket 2.3 war es, verschiedene Maßnahmen zur Flexibilisierung der zuvor implementierten Referenzkraftwerke durch Anpassung der Auslegungsprämissen zu entwickeln. Im Rahmen von stationären Simulationen wurden dazu zwei Ansätze gewählt, eine deutlich reduzierte Anlagengröße, sowie verschiedene Methoden der Ansaugluftvorwärmung.

Blockgröße:

Im zukünftigen Energiemarkt kann der Einsatzbereich konventioneller Kraftwerke deutlich von dem heutigen abweichen, wodurch andere Auslegungsparameter in den Vordergrund rücken. Beispielsweise kann durch weniger Volllaststunden und höhere Anteile an Teillastfahrten der Volllastwirkungsgrad eines Kraftwerks an wirtschaftlicher Relevanz verlieren. Hier rücken dann Teillastwirkungsgrade und Investitionskosten mehr in den Fokus der Auslegung.

Im Rahmen der Studie sollte daher ein Modell kleinerer Blockgröße untersucht werden, welches niedrigere spezifische Kosten aufweist und weniger Wert auf einen hohen Volllastwirkungsgrad legt. Wie bei den zuvor modellierten GuD-Anlagen wurde auch hier wieder auf die Produktpalette von Siemens GT zurückgegriffen. Zum Einsatz kommt die Gasturbine SGT-2000E in Kombination mit der SST-600 Dampfturbine. Der Abhitzekessel wird im Gegensatz zu den zuvor Implementierten Modellen als 2-Druckprozess ausgeführt. Die Reduktion um eine Druckstufe wirkt sich negativ auf den Wirkungsgrad der Anlage aus, reduziert jedoch auch die Investitionskosten. Neben der rein elektrischen Anlage wurde zudem ein KWK-Modell implementiert, welches bis zu 161 MWth Fernwärme bereitstellen kann. Grundlegende Prozessparameter des Modells sind in Tabelle 3 aufgeführt.

Prozessgröße		
Nennlast GuD (Netto)	259 MW	
Frischdampfparameter	bis 565 °C	165 bar
Nennlast Gasturbine (Netto)	187 MW	
Abgastemperatur (Nennlast)	536 °C	
Abgasmassenstrom (Nennlast)) 558 kg/s	
Gesamtwirkungsgrad	53,3 %	
Fernwärmeauskopplung	161 MW	

Tabelle 3: Prozessparameter des 250 MW-GuD

Die hier eingesetzte Gasturbine arbeitet mit zwei Silobrennkammern. Diese sind im Allgemeinen weniger effizient als eine Verbrennung in Ringbrennkammern, bieten aber Vorteile bei der Brennstoffflexibilität. Ein eventueller Fuelswitch oder höhere Wasserstoffanteile im Gasnetz ließen sich mit dieser Technologie leichter umsetzen, was der Anlage eventuelle Vorteile im zukünftigen Energiesystem verschaffen könnte.

Abgasrückführung (AGR oder EGR) und Luftvorwärmung:

In Verbrennungsmotoren werden interne oder externe Abgasrückführungskonzepte eingesetzt, um Teillastwirkungsgrade zu steigern und Stickoxidemissionen zu reduzieren. Dabei werden aktuell Rückführraten von bis zu 50 % bei Otto-Motoren und bis zu 60 % bei Diesel-Motoren erreicht. Für den Einsatz im GuD ist die Funktionsweise der AGR des Otto-Aggregats interessant. Bei weiterhin stöchiometrischer Verbrennung wird dem Motor mit der Frischluft idealerweise sauerstoffloses Abgas zugeführt und so der Inertgasanteil im Brennraum erhöht. Durch diese Maßnahme wird dem Motor in Teillast ein höherer Gasmassenstrom zugeführt wodurch die Drosselklappe weiter geöffnet werden kann und Drosselverluste vermieden werden. Bei der mageren Dieselverbrennung wird durch den Einsatz der AGR der Sauerstoffgehalt der Ansaugluft reduziert und damit die NO_x-Emissionen der Verbrennung gesenkt.

Hier werden verschiedene Strategien zum Einsatz in GuD-Kraftwerken untersucht. Dazu wurden folgende Verschaltungen implementiert:

- Echte Abgasrückführung (Abbildung 5)
- Vorwärmen der Ansaugluft über einen Abgaswärmetauscher
- Vorwärmen der Ansaugluft über einen elektrischen Heizer •
- Vorwärmen der Ansaugluft mit Anzapfdampf oder Speisewasser •
- Vergleich zur Vorwärmung der reinen Gasturbine •

Abbildung 5: GuD-Kraftwerk mit Abgasrückführung

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Eine ungekühlte Abgasrückführung führt bei Gasturbinen bei gleichbleibendem Volumenstrom zu einem verminderten Luftmassenstrom und reduziert damit die Leistung und den Wirkungsgrad. Beim GuD-Kraftwerk führt das Defizit der Gasturbine zu einem höheren Abgasenthalpiestrom und somit zu einer Leistungssteigerung im Dampfturbinenprozess. Erste Ergebnisse zu verschiedenen Schaltungen sind in Abbildung 6 zu sehen. In den untersuchten Modellen wird die AGR bei voll geöffneter Leitschaufelstellung (IGV) der GT zur Lastregelung eingesetzt. Mit steigender AGR wird der Luftmassenstrom und damit die Leistung der GT reduziert, bis die maximale AGR-Rate erreicht ist. In Absprache mit Turbinenherstellern wurde die Rückführrate in diesem Projekt auf 30 % des Gesamtmassenstroms begrenzt. Erst ab diesem Punkt wird eine Leitschaufelverstellung nötig, sodass sich die IGV-abhängige Mindestlast im Vergleich zum Normalbetrieb deutlich reduzieren lässt.

Abbildung 6: Vergleich der Teillastwirkungsgrade unterschiedlicher Vorwärmstrategien

Aufgrund der vielversprechenden Ergebnisse der AGR-Modelle wurden die Ergebnisse der Simulationen beim 52. Kraftwerkstechnischen Kolloquium (KWTK) 2020 in Dresden veröffentlicht. Eine detaillierte Beschreibung der Modelle und derer Ergebnisse liegt in Form der Veröffentlichung "Steigerung des Teillastwirkungsgrads von GuD-Kraftwerken durch Luftvorwärmung" aus dem Veranstaltungsumdruck des 52. KWTK Dresden 2020 diesem Abschlussbericht bei.

AP 2.4 Integration von Speichern in den GuD-Prozess

Die Speicherintegration in den GuD-Prozess bildet einen der Untersuchungsschwerpunkte in AP 2. Neben der Auswahl geeigneter Speichertechnologien sollten hier auch verschiedene Integrations- und Extraktionspunkte untersucht werden. Eine weitere Kernaufgabe dieses Arbeitspaketes bestand darin, den speziellen Charakter der entwickelten internen Speicherkonzepte in einen Parametersatz zu übersetzen, der mit den Energiemarktmodellen des Projektpartners bearbeitet werden kann.

Thermische Energiespeicher (TES):

Am Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik wurden mehrere Konzepte zur Integration thermischer Energiespeicher in GuD-Kraftwerke ausgearbeitet und untersucht von denen hier zwei vorgestellt werden sollen. Die Verschaltung des ersten Speicherkonzeptes ist in Abbildung 7 gezeigt.

Abbildung 7: Fließbild GuD-Kraftwerk mit internem Thermischen Energiespeicher (Flüssigsalzspeicher)

Salzspeicher:

Bei den hier angewendeten Kopplungspunkten des thermischen Energiespeichers ergeben sich Wasser- bzw. Dampftemperaturen zwischen ca. 150 °C und 600 °C, daher wurde ein Speichermedium benötigt, welches eine möglichst große Temperaturspreizung erlaubt. In der Ebsilon Bibliothek für Speicherfluide findet sich das so genannte "HITEC Heat Transfer Salt", dass bei Temperaturen zwischen 150 °C und 525 °C betrieben werden kann. Das Salz setzt sich zusammen aus 40 % NaN02, 7 % NaN03 und 53 % KNO3. Um die kritische untere Temperaturgrenze nicht zu unterschreiten und eine Kristallisation des Salzes im System auszuschließen, wird der Prozess so ausgelegt, dass die kälteste Temperatur im System 175 °C beträgt. Bei der Beladung des Speichers wird das Salz auf 450 °C erwärmt, wodurch sich ein Temperaturhub ergibt, der es erlaubt, bei Entladung Frischdampf in den Hochdruckpfad des GuD-Kraftwerks einzuspeisen.

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Durch die Einbindung dieses Speichers in das Referenzmodell ergeben sich einige Möglichkeiten zur Flexibilisierung des Kraftwerksbetriebs. Wird der Speicher in der Mindestlast des Kraftwerks beladen, lässt sich diese von 57 % auf ca. 54 % senken. Umgekehrt lässt sich die Volllast um ca. 1,9 % steigern. Alternativ ließe sich der Speicher auch in Teillastfahrten entladen, um Brennstoffkosten einzusparen. Eine Beschleunigung von Lastwechseln wäre ebenfalls denkbar, da aber zur Untersuchung solcher Strategien dynamische Simulationen durchgeführt werden müssen, konnten diese nicht innerhalb der Pre-Engineering Studie untersucht werden.

Ruths-Speicher:

Der Ruths-Speicher ist ein Gefällespeicher, der sich zur direkten Dampfbereitstellung eignet. Zur Beladung wird dem Speicher Dampf zugeführt, welcher im Wasserraum kondensiert, dabei steigen Druck und Temperatur im Behälter an. Entnommen wird Sattdampf, der mit der Entnahmemenge an Druck und Temperatur verliert. Zur Integration des Ruths-Speichers mussten neue Integrations- und Extraktionspunkte aus dem Dampfkreislauf des GuD-Kraftwerks ermittelt werden. Die veränderte Schaltung ist in Abbildung 8 gezeigt.

Abbildung 8: Integration eines Ruths-Speichers in den GuD-Prozess

Vergleich der Speichertechnologien:

In den Tabelle 4 und Tabelle 5 sind die Strom-zu-Strom-Wirkungsgrade der beiden untersuchten Speicherkonzepte aufgelistet. Der Flüssigsalzspeicher weist einen nahezu konstanten Wirkungsgrad über alle Be- und Entladebetriebspunkte auf. Der Betrieb ließe sich daher relativ einfach in die Optimierungsmodelle des Projektpartners EWL integrieren.

Tabelle 4: Speicherwirkungsgrade des Flüssigsalzspeichers

Beladepunkt	Entladepunkt	Wirkungsgrad
Volllast	Volllast	58,33 %
Volllast	Mindestlast	57,40 %
Mindestlast	Volllast	58,98 %
Mindestlast	Mindestlast	58,04 %

Tabelle 5: Speicherwirkungsgrade des Ruths-Speichers

Beladepunkt	Entladepunkt	Wirkungsgrad
Volllast	Volllast	64,07 %
Volllast	Mindestlast	60,71 %
Mindestlast	Volllast	60,57 %
Mindestlast	Mindestlast	57,38 %

Der GuD-Betrieb mit Einbindung eines Ruths-Speichers zeigt weniger konstante, dafür höhere Stromzu-Strom-Wirkungsgrade. Mit einem um fünf Prozentpunkte besserem Spitzenwirkungsgrad zeichnet sich der Ruths-Speicher energetisch als die bessere Anlage aus. Vor- und Nachteile der betrachteten Technologien im direkten Vergleich sind in Tabelle 6 aufgeführt.

Tabelle 6: Vergleich der Speichertechnologien

	Ruths-Speicher	Salzspeicher
Pro	 Bessere Speicherwirkungsgrade Integrationspunkte konstruktiv gut erreichbar Einfache Außerbetriebnahme 	 Geringerer Volumenbedarf (130 m³ + 145 m³, bei Auslegung auf eine Volllaststunde) Konstanteres Be- und Entladeverhalten
Contra	 Großes Speichervolumen notwendig (588 m³, bei Auslegung auf eine Volllaststunde) In Mindestlast kann der Speicher nur zu 72 % geladen werden Teuer durch Druckfestigkeit 	 Relativ Komplexe Anlage Integrationspunkte in das Kraftwerk nicht gut erreichbar in Revisionszeiten ist Wärmeenergie aufzuwenden, um die Salzschmelze warm zu halten

Power-to-X:

Eine weitere Möglichkeit der Energiespeicherung bietet die Integration einer Kraftstoffsynthese in das Kraftwerkskonzept. Im Rahmen der Pre-Engineering Studie wurden hierzu Modelle einer Methanolsynthese in Kombination mit dem hier genutzten Referenzkraftwerk untersucht. Da jedoch die Abbildung weiterer Sektoren, neben Strom und Wärme, den Rahmen des Projektes weit überschritten hätten, wurden hier lediglich technische Untersuchungen durchgeführt und eine Betrachtung innerhalb der in AP 4 entwickelten wirtschaftlichen Modelle hat nicht stattgefunden. Die technischen Ergebnisse der Modelle wurden in zwei Veröffentlichungen diskutiert.

"Flexibilisierung eines Erdgaskraftwerks durch Integration einer Methanolsynthese" in "gwf *Gas + Energie*" Heft 5/2019, sowie wortgleich im Veranstaltungsumdruck des 50. KWTK Dresden 2018.

"Flexibilisierung einer GuD-KWK-Anlage durch Integration einer Methanolsynthese" Posterbeitrag auf dem 51. KWTK Dresden 2019.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

AP 3 Zukünftige Auslegungskonzepte weiterer Technologien

Neben der Auslegung von Gas- und Dampfkraftwerken in AP 2 sind weitere erdgasbefeuerte Anlagenkonzepte modelliert und bewertet worden, welche je nach Einfluss des zukünftigen Energiemarkts einen veränderten Einsatz aufweisen. Aufgrund der schnellen Starfähigkeit, der hohen Flexibilität, welche durch modulare Anwendungen bestärkt wird, sowie der hohen Effizienz der Einzelanlagen, zeichnen sich vor allem offene Gasturbinen im mittleren Leistungsbereich sowie Gasmotorensysteme aus, den in Zukunft stark veränderten Einsatzweisen konventioneller Kraftwerke gerecht zu werden. Parallel zu den folgenden Untersuchungen der gasbefeuerten Anlagen wurden ebenfalls Dampfkraftwerke in unterschiedlichen Leistungsklassen und unter Berücksichtigung der Fernwärmebereitstellung modelliert und bewertet. Aufgrund der mehrheitlich politischen Entscheidung des Kohleausstiegs und des damit verbundenen Kohleausstiegsgesetzes werden die Untersuchungen zu den Dampfkraftwerken im Weiteren nicht berücksichtigt. Tabelle 7 gibt einen Überblick über die in Arbeitspaket 3 entwickelten Modelle.

Nr.	Kraftwerkstyp	Anwendung	Modulare	el.	th.	Min.
			Bauweise	Leistung	Leistung	Last
				[MW]	[MW]	[%]
1	Gasmotor	ohne Wärmeauskopplung	ja	10,30	-	100
		(Peaker-Anwendung)				
2	Gasmotor	Gasmotoren mit Wärmeauskopplung	ја	10,31	10,32	100
		(Analog zu Ref. Kiel)				
3	Gasmotor	Gasmotoren mit Wärmeauskopplung +	ја	10,30	10,31	100
		Dampfturbine		(11,51)	(4,60)	
4	Gasmotor	Gasmotoren mit Wärmeauskopplung +	ја	10,30	10,39	100
		Dampfturbine (2-HeiKo)		(10,98)	(8,80)	
5	Gasturbine	Gasturbine ohne Wärmeauskopplung	ја	67,40	-	40
		(Peaker-Anwendung)				
6	Gasturbine	Gasturbine mit Wärmeauskopplung	ја	67,33	70,34	40
7	Dampfkraftwerk	Referenzkraftwerk NRW	nein	555,49	-	43
	(SK)	– 600 MW				
8	Dampfkraftwerk	Referenzkraftwerk NRW	nein	277,39	-	47
	(SK)	– 300 MW				
9	Dampfkraftwerk	RKW NRW + Wärmeauskopplung	nein	555,49	470,00	43
	(SK)	(Entnahmekondensationsturbine)		(445,74)		
		– 600 MW				
10	Dampfkraftwerk	RKW NRW + Wärmeauskopplung	nein	277,39	235,00	47
	(SK)	(Entnahmekondensationsturbine)		(223,20)		
		– 300 MW				

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

AP 3.1 Gasturbinenprozess

Gasturbinenanlagen (Simple Cycle) zeichnen sich durch kurze Startzeiten (< 5 min) und hohe Leistungsgradienten, unabhängig von der Leistungsklasse, als schnellstartfähige Anlagen aus, weshalb sie häufig zur Spitzenlastanwendung eingesetzt werden. Durch die Verwendung als Spitzenlastanlage ist die Auslastung von offenen Gasturbinen gering und beläuft sich auf wenige Betriebsstunden im Jahr mit einer erhöhten Anzahl an Startvorgängen. Somit ist die Betriebszeit pro Start relativ gering. Der durch die EE veränderte Markt und die damit einhergehenden fluktuierenden Lasten können somit einen positiven Einfluss auf die Einsatzweise der offenen Gasturbinenanlagen haben.

Die auf dem Markt vorhandenen Gasturbinenaggregate sind zahlreich und werden von unterschiedlichsten Herstellern angebotenen. Neben der Anwendung im zentralen Energiesektor werden Gasturbinen ebenfalls als Kraft-Wärme-Kopplungsanlagen in industrieller und kommunaler Ebene eingesetzt. Die folgende Abbildung stellt eine Übersicht der auf dem Markt zur Verfügung stehenden Gasturbinenaggregate dar. In den letzten Jahren war die Anlageneffizienz einer der ausschlaggebenden Faktoren für die Auswahl von Gasturbinenanlagen. Wie der Abbildung 9 zu entnehmen ist konnte die Effizienz mit Zunahme der Nennleistung gesteigert werden. Im Bereich größerer Gasturbinenanlagen (> 100 MW) konnten sich zudem nur wenige Hersteller etablieren. Die effiziente Nutzung dieser Anlagen ergibt sich vor allem in der Kombination zu einem Gas- und Dampfkraftwerk. Neben der Steigerung der elektrischen Effizienz und der technisch ausgereiften Möglichkeit einer Entnahme-Kondensationsanlage zur Fernwärmebereitstellung, ist der Verschleiß bei Anlagen dieser Größe erheblich höher als bei kleineren Aggregaten (siehe AP 2). Im Bereich der mittleren Leistungsklasse (1 - 100 MW) ist eine deutliche Abnahme der Effizienz zu kleineren Anlagen erkennbar, jedoch können einige Hersteller Gasturbinenaggregate mit vergleichbarer Effizienz anbieten wie in den größeren Leistungsbereichen. Mikrogasturbinen (< 1 MW) hingegen haben zurzeit eine verhältnismäßig niedrige Effizienz.

Abbildung 9: Übersicht derzeitiger Gasturbinenaggregate¹¹

¹¹ ASUE (Arbeitsgemeinschaft für sparsamen und umweltfreundlichen Energieverbrauch e.V.) – Arbeitskreis "Gasturbinentechnik", Gasturbinen - Kenndaten und - Referenzen, Stand 2015

Unter Anbetracht, der sich verändernden Umstände durch die Einbindung von EE, wird sich ein Trend hin zu kleineren Anlagen, welche flexibel und effizient Lastsenken ausgleichen, entwickeln. Diese Anlagen werden unter Anbetracht eines Brennstoff-Switchs von Erdgas zu Wasserstoff immer größere Anteile Wasserstoff verfeuern können. Somit ist zu erwarten, dass in Zukunft die Gasturbinenaggregate im kleinen und mittleren Leistungsbereich eine Effizienzsteigerung erfahren werden. Weiterhin wird die Wasserstoffkompatibilität in allen Leistungsbereichen erhöht werden¹².

Referenzmodell:

Als Referenzanlage der offenen Gasturbine wurde die aeroderivative Gasturbine SGT-A65 ausgewählt (siehe Abbildung 9). Aeroderivative Gasturbinen (Flugtriebwerke) zeichnen sich unter anderem durch die kompakte Bauweise sowie durch hohe Wirkungsgrade aus, weshalb diese auch heutzutage schon zur Erzeugung in Spitzenlastzeiten zum Einsatz kommen. Außerdem ist eine Erweiterung um einen Abhitzekessel problemlos durchführbar. Daher sind Ansätze zur Kraft-Wärme-Kopplung in Fernwärmenetzen und zur Prozessdampferzeugung ebenfalls denkbar. Die SGT-A65 ist bereits in einem Gasturbinenverbund im Bayonne Energy Center (Bayonne, New York) & als SeaFloat-Kraftwerk des Gowanus Generating Station (Upper Bay von Brooklyn, New York) im flexiblen Einsatz, um Spitzenlasten der Metropole New York City zu decken. Die Entscheidung und damit die Auswahl für die SGT-A65 liegt darin begründet, dass diese Anlage mit einer Nennleistung von ca. 67,4 MW einen relativ hohen Wirkungsgrad von max. 43,8 % besitzt und bereits in Anwendung ist.

Die **Tabelle 8** stellt die wichtigsten Nennlastdaten der SGT-A65 dar:

Parameter:	Einheit:	
Nennleistung	[MW]	65,9 – 67,4
Brennstoff	[-]	Erdgas
Wirkungsgrad	[%]	41,3 - 43,8
Rauchgasmassenstrom	[kg/s]	178
Rauchgastemperatur	[°C]	431
Startzeit	[min]	5
Min. Last	[%]	40

Tabelle 8: Nennlastdaten der SGT-A6513

Zur Auslegung sowie zur Identifizierung des Teillastverhaltens des Gasturbinenprozesses wurde ein Modell in Ebsilon erstellt, welches auf der linken Seite von Abbildung 10 dargestellt ist. Die Auslegung des Prozesses wird von Anlagenparametern bestimmt, welche den Herstellerangaben zu entnehmen sind. Hierbei sind vor allem die Parameter für die Nennleistung, den Ansaugmassenstrom der Luft, der Brennkammeraustrittstemperatur sowie der Turbinenaustrittstemperatur notwendig. Unter Berücksichtigung der Eingangsströme von Luft und Brennstoff sowie des Luftverhältnisses kann mittels

¹² R. Lachner; J. Goldmeer; R. Schmid, The role of gas turbines in a decarbonized energy future – fuel flexibility a low or reduced carbon power generation ecosystem, Veranstaltungsband Kraftwerkstechnik 2019, 2019

¹³ Factsheet: SGT-A65 gas turbine, Siemens Energy AG, 2018

einer weiteren leistungsabhängigen Regelung des isentropen Wirkungsgrads der Turbine die Teilllast bis zur min. Last abgebildet werden. Für einen konkreten Vergleich wurde das Modell mit den Parametern der ENEXSA Gasturbinenbibliothek (EBSILON®Professional) verglichen (siehe Abbildung 10, rechts). Wie der Abbildung zu entnehmen ist, besitzt das Modell eine durchgehend positive Abweichung, die vermutlich auf innere Prozesse (u.a. Luftanzapfungen zur Dichtigkeit im Verdichterstrang) der Gasturbine zurückzuführen sind, welche nicht konkret abgebildet werden können. Aufgrund des relativ gut nachempfundenen Teillastverhaltens und der annehmbaren Abweichungen des Modells zu den Referenzdaten, werden die Ergebnisse im Optimierungsmodell verwendet.

Abbildung 10: Schematische Darstellung des Gasturbinenprozesses der SGT-A65 mit zus. Abhitzekessel (Links) und Gegenüberstellung des Lastverhaltens von Modell und Bibliothek (Rechts)

Die kompakte Bauweise offener Gasturbinen ermöglicht eine modulare Anordnung mehrerer Anlagen zu einem Verbundkraftwerk. Der Vorteil von zukünftig angewandten Verbundkraftwerken sind die flexible Teillast und die hohen Teillastwirkungsgrade, welche durch die Steuerung einzelner Gasturbinenaggregate ermöglicht wird. Unter Anbetracht der hier ausgewählten Gasturbine reduziert sich die minimale Kraftwerkslast bei Ergänzung einer weiteren Gasturbine um 50 % und durch zwei Gasturbinen um 66,6 % (siehe Abbildung 11, links).

Kraft-Wärme-Kopplung:

Die Abwärme von Gasturbinen ist vollständig in den Turbinenabgasen enthalten, weshalb die Ergänzung eines Abhitzekessel eine simple Erweiterung zu einer KWK-Anlage ermöglicht. Da die Turbinenabgastemperaturen mit ca. 431 °C relativ hoch sind, ist die Anwendung der Prozess-/Dampfbereitstellung die exergetisch wertvollste Methode zur Nutzung der Abgaswärme. Weiterhin ist die Bereitstellung von Fernwärme in Anbindung an ein Fernwärmenetz ebenfalls energetisch sinnvoll und umsetzbar. Die in diesem Rahmen untersuchte Konfiguration ergänzt die Anlage, um einen Abhitzekessel zur Fernwärmebereitstellung in einem Fernwärmenetz (siehe Abbildung 11, rechts). Aufgrund der heißen Abgase ist es problemlos möglich, die Spitzenlasttemperatur der Fernwärme von 130 °C, an kalten Tagen, bereitzustellen. Die Leistungsregelung der Wärmebereitstellung von 0 bis 100 % ist über eine Bypass-Leitung frei bestimmbar. Durch den relativ

hohen Wirkungsgrad der Gasturbine in Volllast ist die Abgaswärme der Anlage geringer als gewöhnlich, daher beträgt die Stromkennzahl der Anlage ca. 1 und nähert sich somit an die eines motorisierten BHKW heran.

Abbildung 11: Modulares Flexibilitätsverhalten von 3 parallelbetriebenen Gasturbinen (Links) und P-Q-Diagramm (Rechts)

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

AP 3.2 Gasmotorenprozess

Blockheizkraftwerke (BHKW) auf Erdgasbasis sind in unterschiedlichen Leistungsspektren von wenigen kW bis zu Großgasmotoren mit Einzelleistungen von ca. 20 MW verfügbar. Hauptanwendungsgebiet ist die stationäre Energieversorgung, welche je nach Anwendungssegment bedarfsgerecht durch die Gasmotoren versorgt werden kann. Somit werden kleinere BHKW-Anlagen überwiegend für thermische Anwendungen eingesetzt, weshalb die geringen Wirkungsgrade dieser Anlagen nicht auslegungsentscheidend sind. Bei größeren BHKW-Anlagen (> 100 kW) hingegen ist eine deutliche Steigerung des Wirkungsgrads bis zu ca. 50 % zu verzeichnen (siehe Abbildung 12). Daher werden BHKW-Anlagen in diesem Leistungsbereich häufig von Energieversorgen im Verbundnetz oder in Quartierslösungen eingesetzt.

Abbildung 12: Übersicht derzeitiger Gasmotorenaggregate¹⁴

Aufgrund der hohen Effizienz, Flexibilität und der geringen spez. CO₂-Emissionen von Großgasmotoren werden diese Anlagen heutzutage als "Stand Alone" sowie im Verbund zur elektrischen Energieversorgung, mit nachgeschaltetem Dampfprozess oder für die gleichzeitige Bereitstellung von Strom und Wärme eingesetzt. Aufgrund der hohen Ausnutzungsgrade von Großgasmotoren sind vor allem KWK-Anwendungen, zur Bereitstellung von Strom und Wärme, ein häufiges Anwendungsgebiet (bspw. Küstenkraftwerk Kiel, HKW Chemnitz). Weiterhin können die Anlagenbetreiber, aufgrund der schnellen Startzeiten, am Regelenergiemarkt partizipieren und zusätzliche Erlöse erwirtschaften. Des Weiteren ermöglicht die Anwendung als Motorenverbund, aufgrund der modularen Abschaltung von Motoreinheiten, einen konstanten Wirkungsgrad des Verbundkraftwerks. Abbildung 13 stellt den Lastverlauf solch eines Verbundkraftwerks mit 20 Gasmotoren der Reihe MAN 20V 35/44 G dar. Aufgrund der hohen Wirkungsgrade ergibt sich bei Großgasmotoren ein lineares verhalten zwischen Strom- und Wärmebereitstellung. Um die Flexibilitätsnachfrage zu erfüllen, ist eine Entkopplung der beiden Leistungsströme durch Speichertechnologien zwingend notwendig.

¹⁴ ASUE (Arbeitsgemeinschaft für sparsamen und umweltfreundlichen Energieverbrauch e.V.) – Arbeitskreis "Brennstoffzellen/ BHKW", BHKW -Kenndaten 2014/2015 – Module, Anbieter, Kosten, Stand 2014/15

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Abbildung 13: Lastabhängigkeit eines Motorenverbundkraftwerks

Vorreiter und Leuchtturmprojekt für die Anwendung von Großgasmotoren in einem Verbundkraftwerk zu größeren Leistungen ist das Küstenkraftwerk Kiel. Mit einer modular gestaffelten Kraftwerksleistung von 190 MW, welche durch die 20 Gasmotoren mit je 9,5 MW bereitgestellt wird, kann die Kraftwerkslast in weniger als 5 Minuten zwischen 0 und 100 % (5 % - gestaffelt) variieren. Aufgrund der modularen Betriebsweise werden die Großgasmotoren ausschließlich in Volllast, bei optimalem Wirkungsgrad (> 45 %), betrieben. Neben der Bereitstellung an Strom soll das Kraftwerk vor allem das örtliche Fernwärmenetz mit Wärme versorgen. Durch den hohen Ausnutzungsgrad (> 92 %) der Großgasmotoren ist somit ebenfalls eine thermische Bereitstellung von 192 MW durchführbar.

Referenzmodell Gasmotoren:

Die Auswahl des Referenzprozesses wurde in Anlehnung an das Küstenkraftwerk Kiel getroffen. Somit wurde ein stationäres Simulationsmodell auf Basis von Großgasmotoren der 10 MW-Klasse in Ebsilon modelliert und an die Anforderungen der reinen Stromerzeugung sowie an die gekoppelte Erzeugung von Strom und Wärme angepasst. Die Modulanzahl ist beliebig anpassbar und aufgrund der Leistungsanforderungen an das Kraftwerk wird nur eine modulare An- bzw. Abschaltung der Großgasmotoren in Volllast berücksichtigt. Da die Großgasmotoren unabhängig voneinander betrieben werden, wird für die Darstellung der Verbundanlage vorerst ein einzelner Großgasmotor mit dem dazugehörigen Wärmeübertragungsstrang modelliert (siehe **Abbildung 14**). Die Darstellung der Verbundanlage geschieht anschließend durch Skalierung des Einzelmodells mit der nötigen Motoranzahl.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

Abbildung 14: Schematische Abbildung des Großgasmotoren-BHKWs

Wie bereits erwähnt unterteilt sich das Simulationsmodell in die Darstellung des Großgasmotors und in den Wärmeübertragerstrang, welcher benötigt wird, um die anfallende Wärme aus dem Rauchgas und den Kühlströmen effizient als Heizwärme zur Verfügung zu stellen. Die Auswahl des Großgasmotors wurde unter Berücksichtigung der ENEXSA Kolbenmotoren-Bibliothek getroffen. Durch die von Herstellern bereitgestellten Leistungsdaten können detaillierte Untersuchungen über die Systemintegration des thermischen Profils von Gasmotoren unternommen werden. Die Bibliothek enthält für eine Vielzahl an BHKW die abzuführende Wärme der Mantelkühlung, des Turboladers durch nachgeschaltete Ladeluftkühlung sowie des Schmierölsystems und überführt diese in Motorkühlkreisläufe für Hoch(HT)- und Tief(LT)- Temperaturkühlwasser. Aufgrund der hohen Effizienz der Anlage und der detaillierten Darstellung des Großgasmotors wurde für die Modellierung der Großgasmotor MAN 20V 35/44 G (Stand 2017) gewählt.

Die Ansaugluft des Prozesses wird für den sicheren Anlagenbetrieb des Großgasmotors vorgewärmt. Eine Erhöhung der Ansauglufttemperatur hat weiterhin einen positiven Effekt auf den Nutzungsgrad der Anlage, da die Wärme des LT-Kühlkreislaufs dann verwendet werden kann, welche sonst aufgrund des geringen Temperaturniveaus keinen Beitrag zur Fernwärmebereitstellung liefert. Die vorgewärmte Luft gelangt in den Turbolader und wird auf ein höheres thermisches Niveau gehoben als ohne Vorwärmung. Anschließend wird über die Ladeluftkühlung die Ansaugluft gekühlt und in den Motorraum geleitet. Die Vorwärmung erhöht somit die Wärmeausbeute des Ladeluftkühlers und ermöglicht es, einen Teil der LT-Wärme in die HT-Wärme zu überführen damit diese zur Fernwärmebereitstellung genutzt werden kann. Außerdem wird der Kühlbedarf des LT-Kühlkreislauf reduziert. Nach Angaben beträgt die Leistungszahl (COP-Wert) für solche Verfahren ca. 1,3¹⁵.

¹⁵ Dynamische Fernwärme – Eine technische Anleitung für ein hochflexibles Heizkraftwerk, Wärtsilä Corporation, 2016

Die Ausführung des Wärmeübertragungsstrangs zur Fernwärmebereitstellung besteht jeweils aus einem Wärmetauscher für die Motorölwärme und die HT-Wärme sowie aus einem 2-stufigen Rauchgaswärmetaucher, welcher das Rauchgas auf eine Temperatur von 75 °C herunterkühlt. Für eine effiziente Ausnutzung der gesamten Motorwärme wird der Rücklauf der Fernwärme aufgeteilt und im Motorölwärmetauscher sowie in der zweiten Stufe des Rauchgaswärmetauschers vorgewärmt. Nach Zusammenführung der Ströme wird das vorgewärmte Wasser durch die HT-Wärme und die erste Stufe des Rauchgaswärmetauschers auf eine Vorlauftemperatur von 115 °C erwärmt.

Die modellierte Anlagenkonfiguration des Großgasmotoren-BHKW ermöglicht die Anwendung von zwei Freiheitsgraden, welche beliebig betrieben werden können:

- 1. BHKW anhand der Wärmetauscher-Konfiguration wird der Großteil der anfallenden Wärme als Fernwärme genutzt
- 2. Strom "only" innere Kühlkreisläufe für den gesicherten Betrieb des Großgasmotors werden durch Notkühleranlagen (Tischkühler) runtergekühlt

Bei der Nutzung eines Großgasmotors für die reine Stromerzeugung trifft nur der zweite Fall zu. Die folgende Tabelle 9 stellt die Ergebnisse des Simulationsmodells für den behandelten Großgasmotor dar.

Parameter:	Einheit:	BHKW	Strom "only"
Bruttoleistung	[MW]	10,37	10,37
Nettoleistung	[MW]	10,30	10,28
FW-Auskopplung	[MW]	10,31	0
Wirkungsgrad	[%]	44,44	44,36
Nutzungsgrad	[%]	88,93	-

Tabelle 9: Simulationsergebnisse der Betriebsdaten je Großgasmotor

Erweiterung des Gasmotorenprozesses um nachgeschalteten Wasser-/Dampfkreislauf und/ oder **KWK-Auskopplung:**

Neben der Untersuchung eines Großgasmotoren-Verbundkraftwerks zur reinen Strombereitstellung sollten ebenfalls Erweiterungen um einen nachgeschalteten Wasser-/ Dampfkreislauf (WDKL) und KWK-Auskopplung untersucht werden. Die Erweiterung um KWK-Auskopplung wurde bereits in AP 3.2.1 aufgegriffen, da das Referenzkraftwerk ein Kraftwerk mit KWK-Auskopplung darstellt. Im weiteren Verlauf wurde ein WDKL in das Verbundkraftwerk mit KWK-Auskopplung integriert. Ziel der Anlagenerweiterung zu einem Kombikraftwerk ist die Erhöhung der Freiheitsgrade des Verbundkraftwerks und damit der Betriebsflexibilität.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Abbildung 15: Schematische Abbildung eines Großgasmotors im Kombikraftwerk sowie des WDKL mit externer Kühlung (1) und mit der Verwendung von Heizkondensatoren (2)

Bei der Erweiterung um ein WDKL wird jedem Großgasmotor im Verbund ein 1-Druck-Abhitzekessel zugeschaltet, welcher Frischdampf über eine Sammelschiene dem WDKL zuführt¹⁶. Der WDKL wird auf die Motorenanzahl des Verbunds ausgelegt. Das Teillastverhalten des WDKL resultiert aus dem Anund Abfahren einzelner Motoren. Bei der Ausführung des WDKL wurden zwei Konzepte untersucht, welche sich überwiegend in der Auslegung des Turbinenkondensators unterscheiden. In der ersten Ausführung wird der Dampf bis auf einen Kondensatordruck von 40 mbar entspannt, kondensiert und anschließend mit dem HT-Kühlwasser vorgewärmt (Abbildung 15 (1)). Die zweite Ausführung verwendet Heizkondensatoren (HeiKo) wobei der entspannte Dampf genutzt wird, um den Rücklauf auf die nötige Vorlauftemperatur von 115 °C zu erwärmen (Abbildung 15 (2)). Hierfür werden ein

¹⁶ K. Verma; Dr. H. Gretscher, Kraftwerke mit Gasmotoren – In Kombination mit Erneuerbaren Energien, MTU Onsite Energy, 2017

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT ROF. DR. CHRISTOPH WEBER

höherer Kondensatordruck sowie Turbinenanzapfungen benötigt, weshalb die Dampfturbine in dieser Ausführung weniger Leistung erbringt. Weiterhin wird die restliche Wärme der Großgasmotoren verwendet, um Fernwärme bereitzustellen. Die Rauchgaswärme ist jedoch nicht ausreichend, um die anfallende Motorwärme auf eine Vorlauftemperatur von 115 °C zu erwärmen. Daher wird ein Teil der Wärme über die Notkühler reduziert. Abbildung 16 stellt das Teillastverhalten der beiden Kombikraftwerk-Konzepte (KK, Modus 3) dar sowie des gewöhnlichen BHKW-Betriebs (KWK, Modus 1). Im Volllastbetrieb des Verbundkraftwerks (max. Motoranzahl) stellt sich für das Konzept mit externer Kühlung (KK) eine Erhöhung in der Strombereitstellung, im Gegensatz zum BHKW-Betrieb, von 11,7 % ein und für das Konzept mit Heizkondensatoren (KK-HeiKo) von 6,6 %. Weiterhin reduziert sich die Wärmebereitstellung im KK-Konzept um 55,5 % und im KK-HeiKo-Konzept um gelegentlich 14,7 %.

Abbildung 16: Teillastverhalten des Großgasmotoren-Verbundkraftwerks (BHKW), des Kombikraftwerks mit externer Kühlung (KK) und des Kombikraftwerks mit Heizkondensatoren (KK-HeiKo)

Neben den Betriebsmöglichkeiten in AP 3.2.1 erweitert das Kombikraftwerk die Freiheitsgrade des Verbundkraftwerks. Somit ergibt sich die Möglichkeit, den WDKL mit allen Großgasmotoren bzw. nur mit einem Teil zu betreiben. Dieser Freiheitsgrad ermöglicht eine höhere Stromausbeute bei gleichzeitiger Verringerung der Wärmebereitstellung des Verbundkraftwerks. Somit könnte der Verbund in Zeiten, in denen wenig Wärme nachgefragt wird (bspw. Sommer) die Anlage als

Kombikraftwerk betreiben. **Tabelle 10** stellt die Volllastbetriebsdaten der Freiheitsgrade unter Berücksichtigung der beiden Kombikraftwerksvarianten dar.

Tabelle 10: Betriebsdaten des Verbundkraftwerks unter Berücksichtigung der jeweiligen Konfigurationen in Volllast(Auslegung für 20 Großgasmotoren)

Parameter:	Einheit:	BHKW	KK (BHKW)	KK (Strom "only")	KK - HeiKo (BHKW)	KK - HeiKo (Strom "only")
Motorenanzahl	[-]	20	20	20	20	20
Leistung	[MW]	206,1	230,2	229,7	219,6	219,0
FW-Auskopplung	[MW]	206,3	91,9	-	175,9	-
DT-Leistung	[MW]	-	24,2	24,2	13,7	13,7
Wirkungsgrad	[%]	44,5	49,7	49,6	47,4	47,3
Nutzungsgrad	[%]	89,0	69,5	-	85,4	-
PEE	[%]	24,9	14,0	-	24,0	-
Stromkennzahl	[-]	1,0	2,5	_	1,2	-

Die Untersuchung des Gasmotoren-Kombikraftwerks wurde in AP 3 nur technisch untersucht. Eine ökonomische Auswertung in AP 4 hätte einen erheblichen Zeitaufwand bedeutet, welche im Rahmen des Projektes nicht hätte umgesetzt werden können. Die technischen Ergebnisse der Modelle sowie eine vereinfachte statische ökonomische Abschätzung wurden jedoch im Rahmen einer Veröffentlichung diskutiert.

"Techno ökonomische Bewertung eines Gasmotoren-Kombikraftwerks" Posterbeitrag auf dem 52. KWTK Dresden 2020

AP 3.3 Dampfkraftwerk

In Arbeitspaket 3.3 war die Überführung geeigneter Dampfkraftwerks-Modelle in die Pre-Engineering Studie geplant. Hierzu konnte auf ein breites Spektrum zuvor entwickelter Modelle zurückgegriffen werden. Bereits nach Beginn der Arbeiten in AP 3.3 hat sich mit dem Ergebnis der Kommission für Wachstum, Strukturwandel und Beschäftigung (Kohlekommission), welches ein Ende der Kohleverstromung bis Ende 2038 vorsieht, der technische und auch wirtschaftliche Fokus dieses Projektes im Januar 2019 leicht verschoben. Im Zuge dessen wurde in AP 4 ein weiteres Zukunfts-Szenario entwickelt und der Beschluss gefasst, die Betrachtung von Dampfkraftwerken gänzlich aus dem Projekt auszuschließen und die bereits überführten Modelle in AP 5 nicht weiter zu berücksichtigen. Es wird daher an dieser Stelle auf eine Beschreibung der Modelle verzichtet.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

AP 4 Methodik und Szenarien zur wirtschaftlichen Bewertung

Zur Bewertung des Kraftwerks der Zukunft wurde auf eine Modellkette zurückgegriffen, die innerhalb der Projektlaufzeit um neue Module erweitert wurde. Diese wird im Folgenden erläutert. Abbildung 17 zeigt schematisch den Ablauf. Die von uns gesetzten Szenarioannahmen gehen als Inputparameter in das Langsfristmodell E2M2s ein. Hierbei handelt es sich um ein Investitionsmodell, mit dem ein Kraftwerkszubau für ausgewählte Stützjahre optimiert wird. Ein CO2-Preis kann als Schattenpreis für eine vorgegebene maximal Emissionsmenge ermittelt werden. Um die Rechenzeit zu reduzieren, rechnet E2M2s in Typtagen. Für eine Preiszeitreihe in hoher Auflösung wird daher auf das Modell "Hybridspot" zurückgegriffen. Dieses setzt sich aus einem Merit-Order Modell "Parsimonious Fundamental Model" (ParFuM) und einem stochastischen Zeitreihen-Modell zusammen. Mit ParFum kann mit Brennstoffpreisen, Lastzeitreihen und einem vorgegebenen Kraftwerkspark sowie CO2-Preisen eine stündliche Preiszeitreihe errechnet werden. Das stochastische Zeitreihenmodell wird verwendet, um die Differenz zwischen stündlichen Preisen und Preisen für die Viertelstundenprodukte in der Intraday-Auktion, basierend auf dem Basisjahr 2016, zu simulieren. Die Preiszeitreihen werden im Anschluss im Modell "OptKWS" verwendet, um den Kraftwerkseinsatz und Unsicherheit zu optimieren. Mit der Vermarktung des Kraftwerksportfolios sowie dem ermittelten Einsatzplan können Deckungsbeiträge ermittelt werden. Diese gehen als Eingangsparameter in das Investitions-Tool ein, mit dem (Netto-)Barwerte für die ausgewählten Technologien errechnet werden können, die zu einer abschließenden ökonomischen Bewertung der Technologie herangezogen werden können.

Abbildung 17: Abbildung der Modellkette

Detaillierte Ergebnisse können den folgenden Abschnitten zu den entsprechenden Teilarbeitspaketen entnommen werden.

AP 4.1 Szenariengenerierung und -auswahl

In diesem Kapitel erfolgt eine Zusammenfassung der in diesem Projekt betrachteten Langfristszenarien. Nach der Identifikation von wesentlichen Parametern, welche einen entscheidenden Einfluss auf die Wirtschaftlichkeit des flexiblen Kraftwerks der Zukunft ausüben, wurden konsistente Zukunftsszenarien ermittelt. Die untersuchten Parameter wurden dabei in das für dieses Projekt entwickelte Framework überführt und konsistente qualitative Ausprägungen identifiziert. Die resultierenden qualitativen Ausprägungen sind Abbildung 18 zu entnehmen.

	Brennstoff- preise	Emissions- ziele Stromsektor	Ausbau EE	Brutto Strom-Last	Grenzüber- schreitende Kapazitäten	Regulierung
"Energy Transformation at its best" (A1/A2/N)	↓	↑ ↗	Ţ	↑ ↗	TYNDP wird erfüllt, dann ↑	Kernenergieausstieg in Europa, schneller Kohleausstieg in DE
"Struggling with Energy Transformation" (B)	\rightarrow	\rightarrow	\rightarrow	\rightarrow	TYNDP wird erfüllt, dann →	Kernenergieausstieg nur in DE und Staaten mit Ausstiegsbeschluss, Kohleausstieg in DE
"Market-Oriented Energy Transformation" (C)	\rightarrow	\rightarrow	endogen	\rightarrow	TYNDP wird erfüllt, dann →	Kernenergie als Option in Ländern die keinen Ausstieg beschlossen haben

Abbildung 18: Qualitative Parameterausprägungen der in diesem Projekt betrachteten Szenarien

Szenario A1 und A2: "Energy Transformation at its best": •

• Mit diesem Szenario soll die "perfekte" Umsetzung der Energiewende abgebildet werden: Der Kerntreiber, die Emissionsminderungsziele, werden bezogen auf Deutschland ambitioniert verfolgt. Der obere Zielwert des im Bundeskabinett festgelegten Klimaschutzplans, eine Minderung der THG-Emissionen um 95% im Vergleich zum Jahr 1990, wird im Stromsektor erfüllt. Das Szenario geht von einem hohen Anteil an erneuerbaren Energieerzeugungsanlagen aus, welcher die jetzigen Ziele der Bundesregierung überschreitet. Internationale Brennstoffpreise fallen moderat bzw. stagnieren (durch geringere Nachfrage aufgrund steigenden Einsatzes erneuerbarer Energien), dennoch ist thermische Erzeugung für die Stromproduktion aufgrund hoher CO₂-Preise nur noch begrenzt wettbewerbsfähig. Für Europa wird der Kernenergieausstieg eingeleitet, für Deutschland wird ein Kohleausstieg bis 2038 beschlossen. Nachdem bestehende Ziele des europäischen Netzentwicklungsplans

TYNDP¹⁷ bis 2025 erfüllt werden, wird steigenden von weiterhin grenzüberschreitenden Stromtransport-Kapazitäten ausgegangen.

o Getrieben durch eine verstärkte Elektrifizierung des Verkehrssektors sowie weiterer Sektorenkopplung ergibt sich eine steigende Bruttostromlast verglichen zum heutigem Lastniveau. Eine stärkere Ausprägung dieser Annahme wird im Folgenden als Unterszenario A1 bezeichnet, eine gemäßigte Ausprägung als Unterszenario A2.

Szenario B: "Struggling with Energy Transformation"

• Mit diesem Szenario sollen "Probleme und Rückschläge" bei der Umsetzung der Energiewende berücksichtigt werden. Unter anderem infolge der Divergenz zwischen deutscher und europäischer Energiepolitik wird die Energiewende verzögert umgesetzt. Die gesetzten Emissionsziele werden im deutschen Stromsektor erreicht (80% Reduktion bis 2050), die Ausbaurate erneuerbarer Energien wird nicht administrativ weiter forciert. Die Brennstoffpreise an den internationalen Märkten steigen moderat an. Die Sektorenkopplung wird gemäßigt vollzogen, so dass bei der Bruttostromlast keine signifikante Zunahme zu beobachten ist. Der Kernenergieausstieg wird unter den großen europäischen Staaten nur in Deutschland, Spanien und Belgien (Staaten mit Ausstiegsbeschluss) vollzogen, der Kohleausstieg wird in Deutschland bis zum Jahr 2038 vollzogen. Der TYNDP bis 2025 wird erfüllt, danach bleiben grenzüberschreitende Austauschkapazitäten auf gleichem Niveau.

Szenario C: "Market-Oriented Energy Transformation"

In diesem Szenario wird eine verstärkt marktbasierte Energiewende abgebildet. Die \cap aktuellen Zielvorgaben des Umweltbundesamtes werden im deutschen Stromsektor erreicht (80% bis 2050). Es wird ein moderater Preisanstieg für fossile Energieträger bis ins Jahr 2050 angenommen. Die Ausbaurate erneuerbarer Energien wird durch politische Eingriffe nicht weiter forciert, sie stehen weiterhin in Konkurrenz zum konventionellen Kraftwerkspark. Mäßige Elektrifizierung des Verkehrssektors sorgt bei steigender Effizienz für eine nur leicht erhöhte Bruttostromnachfrage im Jahr 2050. Kernenergie und Kohleverstromung bleiben in vielen europäischen Ländern (im Gegensatz zu Deutschland) eine Option. Der TYNDP wird bis 2025 erfüllt, danach bleiben grenzüberschreitende Kapazitäten auf gleichem Niveau.

Szenario N: "Energy Transformation at its best - zero emissions"

Dieses Szenario ist während der Projektlaufzeit als ein weiteres strenges 0 Klimaschutzszenario aufgenommen worden. Es werden die wesentlichen Annahmen aus Szenario A1 zu Grund gelegt. Um bis zum Jahr 2050 klimaneutral zu sein, wird das bestehende Gasnetz, welches in Szenario A1 mit natürlichem Erdgas befüllt wird, mit ausschließlich klimaneutralem, so genanntem grünem Gas, versorgt. Dies sichert dem

¹⁷ Ten-Year Network Development Plan (ENTSO-E, 2018)

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Stromsektor eine nicht dargebotsabhängige Erzeugungsquelle bei einer Minderung der THG-Emissionen um 100 % im Vergleich zum Jahr 1990.

Die oben eingeführten, qualitativ konsistent gewählten Storylines wurden auf Basis existierender Leitstudien quantifiziert. Die Quantifizierung der Szenarien basiert, insbesondere im Hinblick auf die Restlaufzeiten der bereits existierenden konventionellen Kohlekraftwerke, auf den Ergebnissen der Kommission für Wachstum, Strukturwandel und Beschäftigung ("Kohlekommission")¹⁸ durch die Bundesregierung, welche Ende Januar 2019 veröffentlicht wurden.

Die Entwicklung der Brennstoffpreise wird auf Basis des World Energy Outlooks 2017 (WEO) der International Energy Agency (IEA)¹⁹ abgebildet. In Szenario A wird hierbei eine niedrige Ausprägung (aufgrund weltweit niedrigerer Brennstoffnachfrage) angenommen, korrespondierend mit dem "Sustainable Development Scenario" des WEO. In den Szenarien B und C wird das "New Policy Scenario" zugrunde gelegt, welches weitere koordinierte Maßnahmen zur Erreichung der globalen Klimaschutzziele vorsieht, jedoch ein weniger ambitioniertes Szenario im Vergleich zum "Sustainable Development Scenario" darstellt.

Die Annahmen bezüglich des Ausbaus erneuerbarer Energien folgen für das Szenario B und seiner mittleren Ausprägung dem Basisszenario des Bundesministeriums für Wirtschaft und Energie bezüglich Langfrist- und Klimaszenarien (2017)²⁰ für Deutschland, sowie den verfügbaren Zukunftsszenarien der europäischen Netzbetreiber (ENTSO-E) in Form des Mid-Term Adequacy Forecasts (2017)²¹ für den Rest Europas. Für die Szenarien (A1, A2, N) mit verstärkter Emissionsminderung werden für die deutschen Ausbauwerte das Klimaschutzszenario 95 des Öko-Instituts²² hinterlegt. Der dort prognostizierte Ausbaupfad erneuerbarer Energien stellt im Simulationsmodell E2M2s dabei jedoch nur eine Untergrenze des möglichen Ausbaus in den modellierten Szenarien dar (vgl. unten), ein über die Vorgaben hinausgehender Zubau ist möglich. Im marktorientierten Szenario C werden die Kapazitäten der erneuerbaren Energien rein endogen durch das Modell E2M2s bestimmt.

Die Annahmen zur Lastentwicklung der Szenarien B und C basieren ebenfalls auf den Ergebnissen des Basisszenarios der Langfrist- und Klimaszenarien (2017)²³. Dabei entspricht die Bruttostromlast des Jahres 2050 (612 TWh) in etwa der heutigen Jahresstromlast. Die Szenarien A1, A2 und N hingegen gehen von einer Sektorenkopplung, d.h. der Elektrifizierung der Energieanwendungen in den Bereichen Verkehr und Raumwärme aus. Während für A2 eine schwächere Ausprägung dieses Effektes

¹⁸ https://www.bmwi.de/Redaktion/DE/Artikel/Wirtschaft/kohleausstieg-und-strukturwandel.html ¹⁹ World Energy Outlook 2017 (IEA, 2017)

²⁰ Langfristszenarien für die Transformation des Energiesystems in Deutschland (BMWi, 2017); Berichtsmodul 3 verfügbar unter https://www.bmwi.de/Redaktion/DE/Artikel/Energie/langfrist-und-klimaszenarien.html

forecast 2017 Edition" (ENTSO-E 2017), Bericht verfügbar Mid-term adequancy unter https://www.entsoe.eu/outlooks/midterm/

²² Klimaschutzszenario 2050 2. Endbericht (Öko-Institut 2015)

²³ Siehe 20.

und eine Jahresstromnachfrage von 686 TWh im Jahr 2050²⁴ zugrunde gelegt wird, berücksichtigt Szenario A1 eine deutlich stärkere Steigerung des Jahresbruttostromverbrauchs auf 1070 TWh im 2050, analog zu den Ergebnissen des 85%-Reduktionsszenarios ESYS-Jahre des Sektorenkopplungsberichts (2017)²⁵.

Für die Bestimmung der Spotmarktpreispfade werden zunächst Input-Parameter für das fundamentale Marktmodell (E2M2s) festgelegt. Dabei werden die Langfristszenarien resultierend aus den Annahmen des AP 1 zugrunde gelegt. Mit dem Systemmodell E2M2s werden Kraftwerkskapazitäten, sowie das Außenhandelssaldo und der CO₂-Preis ermittelt. Zentrale Annahmen zu Bruttostromverbrauch und Brennstoffkosten sind in Tabelle 11 angegeben. Die Ergebnisse des Modells sind in Tabelle 12, Tabelle 13 und Tabelle 14 dargestellt.

Simulationen des zukünftigen Kraftwerksparks mithilfe des Langfristmodell E2M2s

		A1	A2	В	С	Ν
Stromverbrauch [TWh]	2025	581	581	541	541	581
	2035	605	581	544	544	605
	2050	1070	686	612	612	1070
Kohlepreise [€/MWh _{th}]	2025	6.57	6.57	7.55	7.55	6.57
	2035	6.39	6.39	7.97	7.97	6.39
	2050	6.08	6.08	8.27	8.27	6.08
Gaspreise [€/MWhth]	2025	19.15	19.15	21.61	21.61	19.15
	2035	20.84	20.84	24.96	24.96	20.84
	2050	23.25	23.25	29.43	29.43	119.67^{*}

Tabelle 11: Annahmen zu Stromverbrauch und Brennstoffkosten in Szenarien und Stützjahren

*Synthetisches klimaneutrales Methan

In allen Szenarien, mit Ausnahme von Szenario B, steigen die Baseload-Preise an. Der höhere mit E2M2s ermittelte CO₂-Preis ist hierbei einer der Haupttreiber. In Szenario A1 und Szenario A2 ist dieser besonders hoch, da in beiden Szenarien eine 95%-Reduktion der Emissionen gegenüber dem Jahr 1990 vorgegeben ist. Obwohl in Szenario A1 im Vergleich zu A2 nur der Stromverbrauch in Deutschland angehoben wurde, ergibt sich im Modell ein Unterschied des CO₂-Preises von fast 170 €/tCO₂. Dies zeigt eine starke Sensitivität des CO₂-Preises in Bezug auf die exogen vorgegebene Last. Mit einer starken Sektorenkopplung und dem 95 %-Reduktionsziel für die CO₂-Emissionen stellt Szenario A1 ein weitgehendes Dekarbonisierungs-Szenario dar. Deutschland wird in allen Szenarien im Modell von einem Netto-Stromexporteur zu einem Netto-Stromimporteur. Das kann durch den Atomausstieg, die Stilllegung von Kohlekraftwerken, sowie durch den starken Zubau von Photovoltaikanlagen in den südlichen EU-Ländern erklärt werden. In allen Szenarien ist zudem eine Substitution von Stein- und

²⁴ Langfristszenarien für die Transformation des Energiesystems in Deutschland (BMWi, 2017); Berichtsmodul 6 verfügbar unter https://www.bmwi.de/Redaktion/DE/Artikel/Energie/langfrist-und-klimaszenarien.html

²⁵ 'Sektorkopplung' – Optionen für die nächste Phase der Energiewende (acatech et al., 2017)

Braunkohlekraftwerken durch Gaskraftwerke zu beobachten. Im Szenario A1 ist für 2050 die Kapazität von Gasturbinen-Kraftwerken 85 GW höher als im Szenario A2. Durch die ausgeprägte Sektorkopplung in Szenario A1 und die dadurch stark erhöhte Lastspitze erhöht sich der Bedarf an gesicherter Leistung, der durch den Ausbau von Gasturbinen gedeckt wird.

Tabelle 12: Ergebnisse E2M2s Szenarien A1 und A2

		A1			A2	
	2025	2035	2050	2025	2035	2050
Base Preis [€/MWh]	51,37	72,71	107,19	50,36	61,48	89,77
CO₂ Preis [€/t]	32,14	86,15	502,88	26,32	58,87	337,6
AH-Saldo [TWh/a]	-53,11	-43,75	-83,89	-77,35	-77,23	-87,72
Gasturbine [GW]	46,85	56,43	131,67	36,67	50,44	83,26
GuD [GW]	20,04	41,92	70,03	23,27	31,71	32,12
Steinkohle [GW]	12,57	3,19	0	12,57	3,19	0
Braunkohle [GW]	12,49	2,86	0	12,49	2,86	0
PV [GW]	63,6	82,5	158,24	42,8	82,5	130
Wind [GW]	75,9	118,2	487,9	55,6	118,2	245,09

Tabelle 13: Ergebnisse E2M2s Szenarien B und C

		В			С	
	2025	2035	2050	2025	2035	2050
Base Preis [€/MWh]	54,48	74,18	70,33	61,02	73,76	75,71
CO₂ Preis [€/t]	27,15	66,54	65,94	41,97	63,25	65,09
AH-Saldo [TWh/a]	-51,53	-55,81	-91,75	-58,63	-49,42	-107,29
Gasturbine [GW]	36,24	37,14	56,48	30,4	38,38	56,66
GuD [GW]	16,52	38,21	45,11	21,97	36,65	44,2
Steinkohle [GW]	12,57	3,19	0	12,57	3,19	0
Braunkohle [GW]	12,49	2,86	0	12,49	2,86	0
PV [GW]	52	52	69	41,34	41	79,53
Wind [GW]	66,88	93,63	124,46	50,11	96,58	108,48

Der Ausbau der erneuerbaren Energien ist für die Jahre 2025 und 2035 für alle Szenarien, außer für Szenario C, exogen vorgegeben. Für das Jahr 2050 ist zusätzlich ein endogener Ausbau möglich, um das vorgegebene CO₂-Reduktionsziel erreichen zu können. Der Vergleich zwischen den Szenarien A1 und A2 zeigt, dass eine starke Sektorkopplung auch mit einem starken Ausbau der erneuerbaren Energien einhergeht.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Tabelle 14: Ergebnisse E2M2s Szenario N

		N	
	2025	2035	2050
Base Preis [€/MWh]	51,37	72,71	106,79
CO₂ Preis [€/t]	32,14	86,15	-
AH-Saldo [TWh/a]	-53,11	-43,75	-79,57
Gasturbine [GW]	46,85	56,43	130,4
GuD [GW]	20,04	41,92	71,21
Steinkohle [GW]	12,57	3,19	0
Braunkohle [GW]	12,49	2,86	0
PV [GW]	63,6	82,5	157,9
Wind [GW]	75,9	118,2	494,43

Das Szenario N unterscheidet sich vom Szenario A1 in den folgenden Punkten: In Szenario N wird bis 2050 eine vollständige Dekarbonisierung des Strom- und Fernwärmesektors vorgegeben. Für eine hundertprozentige Reduktion von CO₂ sind zusätzliche Möglichkeiten der CO₂-Reduktion im Rahmen des Modells E2M2s zu berücksichtigen: Während der Fernwärmebedarf durch Power-to-Heat im Modell CO₂-neutral gedeckt werden kann, sind im Stromsektor weitere Optionen abzubilden, mit denen die Anforderungen an die gesicherte Leistung und Regelleistungsbereitstellung ohne fossile Brennstoffe erfüllt werden können. Technische Möglichkeiten bestehen hier u. a. durch die Nutzung von Power-to-Gas, die Bereitstellung der Regelleistung durch Wind- und Solarkraftwerke, den Ausbau von Biomassekraftwerken und Methoden des Carbon Capture and Storage (CCS). Aufgrund einer fehlenden Akzeptanz und zu Konflikten bei der Flächennutzung in Deutschland werden CCS und der weitere Ausbau von Biomassekraftwerken nicht in Betracht gezogen. Power-to-Gas und eine Bereitstellung der Regelleistung durch Wind- und Solarkraftwerke werden dementsprechend in E2M2s umgesetzt. Zudem gibt es in Szenario N im Jahr 2050 die Möglichkeit, synthetisches Gas aus dem außereuropäischen Ausland zu importieren. In den Marktergebnissen unterscheiden sich Szenario A1 und N nicht stark. Dies kann dadurch erklärt werden, dass die Kosten im Jahr 2050 für die Kraftwerksbetrieb mit fossilem Gas und einem zusätzlichen hohen CO2-Preis in Szenario A1 in einem ähnlichen Bereich liegen wie der Ankauf von klimaneutralem synthetischen Gas in Szenario N.

Modellierung stündlichen Preiszeitreihen der fundamentalen sowie kurzfristigen Preisunsicherheiten mithilfe des Modells HYBRIDSPOT:

Nachdem mit Hilfe des Marktmodells E2M2s, unter Berücksichtigung der europäischen Energiemärkte, der Kraftwerkspark des deutschen Marktgebiets ermittelt wurde, werden mit diesen Kapazitäten die Großhandelsspotpreise der Stützjahre modelliert. Als weitere Inputs fließen die durch E2M2s errechneten CO₂-Preise sowie die Produktionszeitreihen für dargebotsabhängige Erneuerbare (Wind und Solar), sowie Stromim- und Stromexportzeitreihen in das Modell HYBRIDSPOT ein. HYBRIDSPOT ist eine Erweiterung eines vereinfachten Fundamentalmodells um stochastische Komponenten. Für alle zuvor definierten Szenarien sowie Stützjahre modelliert HYBRIDSPOT sowohl fundamentale Strom-

Spotpreise als auch hybride stochastische Preise für das deutsche Marktgebiet. Der Fundamentalpreis einzelner Lieferperioden resultiert aus dem Schnittpunkt von Angebots- und Nachfragekurven jedes Zeitschritts. Die Nachfragekurve wird durch die sogenannte Residuallast abgebildet, d. h. der Stromnachfrage abzüglich der Einspeisung aus Wind, Solar, KWK-Must-Run²⁶ sowie des Auslandshandelssaldos²⁷. Ziel des Modells HYBRIDSPOT ist es, repräsentative Zeitreihen für den zukünftigen Strommarkt zu generieren. Dabei liegt der Fokus zunächst auf stündlichen Day-Ahead-Preisen.

Die stochastische Komponente wird durch ein multivariates ARMA-Faktormodell modelliert, das die Differenz zwischen beobachtetem und fundamentalem Preis abbildet. Hierbei werden zunächst die einzelnen Stunden des Tages zu normalverteilten Variablen transformiert. In einem zweiten Schritt werden diese mit einer Hauptkomponentenanalyse in unkorrelierte Faktoren zerlegt. Diese werden mit ARMA-Modellen modelliert. Das Zeitreihenmodell wird anhand der Werte für 2016 geschätzt, um damit eine Stochastik für die einzelnen Stützjahre simulieren zu können. In Abbildung 19 ist exemplarisch der modellierte Strompreisverlauf für einen Tag abgebildet. Die rote Linie zeigt den erwarteten Preis aus dem Fundmentalmodell. Die blaue Linie zeigt die beobachteten Preise an diesem Tag und diese weist im Vergleich eine erheblich höhere Schwankungsbreite auf. Die Differenz kann statistisch analysiert werden und darauf aufbauend können stochastische Simulationen durchgeführt werden. Die resultierenden "Störgrößen" werden dann jeweils zum fundamentalen Strompreis addiert. Beispielhaft für das Resultat ist hier die gelbe Linie dargestellt. Der blau schattierte Bereich zeigt das vom Zeitreihenmodell bestimmte 90 %-Konfidenzband. Mit derselben Methodik kann auch die Differenz zwischen der Day-Ahead- und der Intraday-Auktion simuliert werden. Dies ist exemplarisch im rechten Teil von Abbildung 19 dargestellt. Hier ist zu sehen, dass das "Sägezahnmuster" des IDA-Preises durch das multivariate Zeitreihenmodell reproduziert werden kann.

²⁶ Wärmenachfragegesteuerte KWK-Anlagen erzeugen aufgrund von Wärmelieferverpflichtungen eine strompreisunabhängige aber temperaturabhängige Produktion. Dies wird häufig als "Must-Run" bezeichnet. ²⁷ Dies bezeichnet die Nettohandelsposition Deutschlands zu seinen Nachbarländern.

Abbildung 19: Beobachtete, fundamental und simulierter Day-Ahead und IDA Preis 18.07.2016

Die resultierenden Spotpreise werden im Folgenden dargestellt. Tabelle 15 zeigt eine Übersicht über die Grundlast-(Baseload-)Preise für die verschiedenen Szenarien und Stützjahre. Die Preise steigen tendenziell an und sind vor allem in den Szenarien A1 und N besonders hoch. Die Preise sind hierbei stark von der Gesamtnachfrage getrieben. Die in Tabelle 16 dargestellte Standardabweichung sowie die in Tabelle 17 angegebene Anzahl negativer Preise sind ebenfalls in den Szenarien A1 und N besonders hoch, da der hohe Anteil an erneuerbaren Energien häufig zu einer negativen Residuallast führt. Dies ist ein Hinweis darauf, dass Flexibilität in diesen Szenarien einen besonders hohen Wert haben könnte.

	A1	A2	В	С	Ν
2025	50,14	52,81	52,66	66,20	50,14
2035	60,41	48,28	66,32	68,73	60,41
2050	109,10	80,54	57,99	58,05	101,13

Tabelle 15: Baseload-Preise [€/MWh]

Tabelle 16: Standardabweichung der simulierten Day-Ahead-Preise

	A1	A2	В	С	Ν
2025	29,46	21,13	27,95	23,89	29,46
2035	47,41	42,64	43,87	40,99	47,41
2050	129,40	98,94	48,35	45,76	123,83

Tabelle 17: Anzahl Stunden mit simulierten Day-Ahead-Preisen von null oder geringer

	A1	A2	В	С	Ν
2025	1.003	459	813	447	1.003
2035	1.914	2.182	1.463	1.311	1.914
2050	1.819	1.884	1.231	1.188	1.848

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

AP 4.2 Weiterentwicklung eines Tools zur optimierten Fahrweise und Ermittlung erzielbarer Deckungsbeiträge unter Berücksichtigung prozesstechnischer Nebenbedingungen

In diesem Teilarbeitspaket wurde eine Methodik zur jährlichen ökonomischen Bewertung der in diesem Projekt entwickelten flexiblen Kraftwerkstechnologien erarbeitet und das zweiteilige Tool OptKWS implementiert, welches ein stochastisches und ein deterministisches Optimierungsmodell zur Bestimmung der ökonomisch optimalen Vermarktung und Fahrweise dieser Technologien enthält.

Implementierung eines rollierenden stochastischen Optimierungsmodells zur Abbildung kurzfristiger Vermarktungsmöglichkeiten (Strom- und Regelleistungsmärkte):

Für jede in AP 5 betrachtete Technologie wird dabei zunächst ein stochastisches 60-Stunden-Modell genutzt. Das mit Hilfe der Optimierungssoftware GAMS implementierte Modell baut hierbei auf bestehenden Portfoliovermarktungsmodellen des EWL auf. In diesem Modell wird die optimale Vermarktung eines vordefinierten Kraftwerksportfolios am Vortag der Lieferung in den zur Verfügung stehenden Regelleistungs- und Elektrizitätsmärkten berechnet, d.h. unter kurzfristiger Preisunsicherheit. Das Modell durchläuft hierfür die jeweiligen Vermarktungsschritte (Primär-, Sekundär, Minutenreservemärkte, Spotauktionen Day-Ahead und Intraday) und vermarktet die verfügbare Leistung gemäß den physischen Restriktionen des Kraftwerks und seines Umfelds optimal, d.h. unter Maximierung des Portfoliogewinns. Hierbei ist sowohl eine deterministische als auch eine (kurzfrist-)szenarienbasierte Optimierung möglich. In diesem Projekt wurde auf Basis der Erfahrungen früherer stochastischer KWK-Systemoptimierungsmodelle des EWL eine stochastische Optimierung mit 10 Preisszenarien gewählt.

Die integrierte Gesamtoptimierung eines langen Betrachtungszeitraums, in diesem Projektkontext beispielsweise eines gesamten Jahres, ist aufgrund der Komplexität des Modells nicht möglich. Daher wird ein rollierender Optimierungsansatz gewählt. Es erfolgt eine rollierende Optimierung über alle Einzeltage eines Jahres. Hierzu werden jeweils 60 Stunden, beginnend um 12 Uhr des dem optimierten Tag vorangehenden Tages (d.h. am Tag der jeweiligen Auktionen) und endend am Folgetag des optimierten Tages, simuliert. Die Handelsergebnisse der ersten 12 Stunden (Stunden 13-24 des Auktionstages) werden hierbei als am Vortag fixiert angenommen. Die Preisausprägungen der Stunden des optimierten Tages, sowie des Folgetages werden als unsicher angenommen, sodass hierfür die in AP 4.1 durch das Modell HYBRIDSPOT modellierten kurzfristigen Preisszenarien genutzt werden. Nach den fünf Optimierungen für die Marktentscheidungen eines Tages und der jeweiligen Auswertung der Marktergebnisse erfolgt eine Einsatzoptimierung für den aktuell betrachteten Tag, sodass insgesamt sechs Optimierungen pro Tag mit jeweils einem Planungshorizont von 60h erfolgen. Nach dieser Optimierung wird der zu betrachtende Zeitraum um 24 Stunden weitergeschoben²⁸.

²⁸ Das Modell in der oben beschriebenen Form ist die weiterentwickelte Version einer Kombination zweier in vorherigen Projekten entwickelter Optimierungsprogramme zu einem Gesamtmodell. Eine Vorgängerversion, die lediglich Vermarktung am Spotmarkt berücksichtigte, wurde im BMWi-Projekt "Die Stadt als Speicher" für das stochastische Backtesting genutzt (vgl. auch Dietrich, Furtwängler, Weber (2020): "Managing combined power and heat portfolios in sequential spot power markets under uncertainty", HEMF Working Paper 03/2020),

Die implementierten Nebenbedingungen des Modells umfassen u.a. Wärmenachfragebedingungen, Kapazitätsrestriktionen, sowie Abbildungen von einfachen elektrischen und thermischen Speichern, elektrische und thermische Rampenbedingungen, sowie Mindestbetriebs- und Mindeststillstandzeiten und Nebenbedingungen bzgl. der durch die Vermarktungen induzierten Regelleistungs- bzw. Spotpreisgebotskurven. Innerhalb dieses Projektes wurden einige neue Nebenbedingungen hinzugefügt, die z.B. die Modellierung weiterer Technologien, wie Flüssigsalzspeichern und Ruths-Speichern, sowie die Abbildung des modularen Aufbaus eines virtuellen Kraftwerks aus 29 Gasmotoren umsetzen. Für alle Technologien wurde außerdem in Abstimmung mit den Ergebnissen der vorherigen Arbeitspakete 2 und 3 eine Parametrierung der relevanten Kraftwerksparameter vorgenommen, um den technischen Modellierungen der betrachteten Technologien, trotz notwendiger Vereinfachungen des gemischt-ganzzahligen linearen Optimierungsmodells OptKWS möglichst gut zu entsprechen. In AP 5.1 wird daher untenstehend eine Bewertung der Abbildung hinsichtlich der Kongruenz der genutzten technischen Modelle des LUAT und der wirtschaftlichen Modelle des EWL unternommen.

Implementierung eines rollierenden deterministischen Optimierungsmodells des kontinuierlichen Intradayhandels:

Zusätzlich wurde in diesem Projekt die Implementierung eines OptKWS-Zusatzmoduls vorgenommen, welches zur Modellierung der kurzfristigen Vermarktungsentscheidungen eines Kraftwerksbetreibers zusätzlich die Vermarktungsmöglichkeiten im kontinuierlichen Intradayhandel (IDC) mittels eines stündlich rollierenden, deterministischen Optimierungsansatzes betrachtet. Dieses Modul nutzt die Ergebnisse der vorgelagerten, stochastischen 60-Stunden-Optimierung als Input. So werden für das neue Modul Entscheidungen des 60h-Modells aus der Einsatzoptimierung, wie Anfangs- und Endspeicherstände als Basisfahrplan vorgegeben. Auf Basis von kurz vor Erfüllung zu neuen Preisen handelbarer Produkte im kontinuierlichen Handel kann der bestehende Einsatzplan so noch einmal unter Berücksichtigung begrenzter Liquidität und der Rückwirkungen eigener Entscheidungen auf den im kontinuierlichen Handel bezuschlagten Strompreis korrigiert werden. Dies wird durch die Abbildung einer dem (Limit-Order-)Gebotsbuch des kontinuierlichen Intradayhandels nachempfundenen Stufenfunktion realisiert²⁹, siehe **Abbildung 20**.

die Regelleistungsmodellierung ist in weiten Teilen an die Implementierung innerhalb des EFRE.NRW-Projektes StoOpt.NRW angelehnt. In beiden Modellen wurde außerdem bereits die Implementierung von heute üblichen KWK-Anlagen mit ihren spezifischen Charakteristika und einem oder zwei Freiheitsgraden (Gegendruck-, bzw. Entnahmekondensationsturbinen) umgesetzt.

²⁹ Eine Vorgängerversion dieses Moduls zur einmaligen Optimierung einer Intraday-Handelsposition (d.h. ohne rollierenden Einsatz, begrenzter Handelbarkeit und Berücksichtigung von vorherigen Speicherfüllständen) wurde ebenfalls bereits im oben genannten Projekt StoOpt.NRW implementiert. Im Rahmen dieses Projektes wird ein solcher Ansatz jedoch zum ersten Mal auf eine breite Datenbasis angewandt. Neben dem veränderten Einsatzkontext des Modells im Rahmen einer rollierenden Jahresoptimierung für Zukunftsjahre unterscheidet sich die in diesem Projekt genutzte Modellversion außerdem durch die im aktuellen Projekt entwickelten technischen Nebenbedingungen der betrachteten innovativen Kraftwerkskonzepte vom Modell des vorherigen Projektes.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

Abbildung 20: Abbildung der handelbaren Preis-Mengen-Kombination über eine Stufenfunktion (eigene Darstellung)

Einsatz der implementierten Modelle zur Deckungsbeitragsbestimmung für betrachtete Technologien

Wie oben beschrieben, wird zur Bewertung einer Technologie in einem vorgegebenen Stützjahr und Szenario zunächst das stochastische 60h-Optimierungsmodell ausgeführt, die Ergebnisse danach in das deterministische IDC-Optimierungsmodell importiert und mit diesem dann die finalen Fahrpläne bestimmt. Dabei werden die entstehenden Betriebskosten und sowie die Vermarktungsergebnisse auf allen betrachteten Märkten zur Berechnung der jährlichen Deckungsbeiträge herangezogen.

Für Technologien, die in Wärmeerzeugungsportfolios (z.B. zur Einspeisung in ein Fernwärmenetz), d.h. nicht nur zur Stromerzeugung- und Regelleistungserbringung, sondern auch zur Wärmebereitstellung genutzt werden, ist jedoch eine isolierte Deckungsbeitragsberechnung nicht direkt zielführend, da Wärmelieferverpflichtungen sowie mögliche Portfolioeffekte eine rein durch die Strom- und Regelleistungserlöse getriebene Fahrweise verhindern. Daher wird zur Bewertung dieser Kraftwerkskonfigurationen eine parallele Vergleichsrechnung bei alternativer Wärmebereitstellung durchgeführt (in der zusammenfassenden **Abbildung 21** durch eine hellere Farbgebung gekennzeichnet), um die relativen Deckungsbeiträge der untersuchten Technologien im KWK-Fall, die durch die Erlösdifferenz zwischen zwei ausgewerteten Portfolios bemessen werden kann, zu identifizieren. Hierzu müssen zunächst diese Vergleichswärmeportfolien definiert werden.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Abbildung 21: Einbindung des stochastischem 60h-Optimierungsmodells, sowie des IDC-Moduls in die PreEngineering-Modellkette

Definition von Vergleichsportfolios zur Ermittlung von relativen Deckungsbeiträgen von Wärmeerzeugungsportfolien:

Um eine aussagekräftige Vergleichsbasis für die betrachteten Technologien zu generieren, wird das Ziel verfolgt, ein in Größe und Zusammensetzung durchschnittliches Portfolio für die jeweiligen Stützjahre zu definieren. Daher wurde eine Metaanalyse der größten deutschen Wärmenetze auf Grundlage öffentlich zugänglicher Informationen sowie lehrstuhlinterner Daten früherer Projekte durchgeführt und daraus die folgenden durchschnittlichen Wärmenetzeigenschaften für das Jahr 2017 identifiziert (siehe Tabelle 18).

Tabelle 18: Beschreibende Eigenschaften eines repräsentativen Portfolios 2017 (größten 19 Fernwärmenetze Deutschlands, Rundung auf ganze Stellen)

Kennzahl	Einheit	Wert
Durchschnittliche Wärmenachfrage	[MW _{th}]	456
Durchschnittliche Wärmespitzenlast	[MW _{th}]	970
Durchschnittliche Anzahl KWK-Anlagen	[-]	5
Durchschnittliche elektrische Leistung je KWK-Anlage	[MW _{el}]	94
Durchschnittliche Wärmeleistung je KWK-Anlage	[MW _{th}]	146
Durchschnittliche elektrische Leistung der größten KWK-Anlage	[MW _{el}]	315
Durchschnittliche Wärmeleistung der größten KWK-Anlage	[MW _{th}]	354
Kumulierte Wärmeleistung installierter Spitzenlastkessel	[MW _{th}]	427
Wärmeleistung installierter Wärmespeicher	[MW _{th}]	82
Speichergröße installierter Wärmespeicher	[MWh _{th}]	625

Zur notwendigen Reduktion der Rechenkomplexität in der in OptKWS erfolgenden stochastischen Optimierung wurde aus diesen Informationen ein repräsentatives Wärmeportfolio generiert, welches Einzelanlagen zu virtuellen Kraftwerken zusammenfasst. Dieses repräsentative Portfolio besteht aus (KWK1), sowie einer kleineren zweiten (KWK2) KWK-Anlage einer großen (jeweils Entnahmekondensationsturbinen, da im Jahr 2017 bereits vorherrschende Technologie), einem Spitzenlastheizkessel (HK), sowie einem Wärmespeicher (WS). Auf die explizite Modellierung einer in

Wärmenetzen außerdem häufig existenten Müllverbrennungsanlage wird verzichtet, stattdessen wird in Übereinstimmung mit realen Produktionsstrategien dieser Anlagen eine preisunabhängige Dauerproduktion angenommen³⁰ und von der modellierten Wärmenachfrage abgezogen. Diese wird mithilfe eines von Felten et al. (2017)³¹ implementierten Wärmeprofilgenerierungstools für das repräsentative Portfolio 2017 generiert. Hierbei wurde die Temperaturzeitreihe des Jahres 2017 des Standorts Düsseldorf zugrunde gelegt.

Aufgrund des beschlossenen Kohleausstiegs wird für alle Szenarien und Stützjahre, mit Ausnahme von Szenario N im Jahr 2050, als genutzter Brennstoff Erdgas angenommen. In Szenario N wird im Jahre 2050 der Betrieb aller Verbrennungsanlagen unter Nutzung eines klimaneutral produzierten, importierten grünen Gases mit erdgasähnlichen Verbrennungseigenschaften (vgl. AP 4.1) angenommen. Tabelle 18 beschreibt das angenommene repräsentative Portfolio 2017 und seine Fortschreibung bis ins Stützjahr 2050. Bezüglich Wirkungsgraden, Nutzungsgraden, sowie Wärmespeichergrößen wird eine lineare Veränderung dieses Vergleichsportfolios unterstellt, die den angenommenen technologischen Fortschritt widerspiegelt. Die 2050 final resultierenden Werte sind passend zu den Annahmen des Pre-Engineering-Lastenheftes aus AP 1.1 gewählt.

³⁰ Müllverbrennungsanlagen dienen primär der Müllentsorgung und beinhalten komplexe Prozesse der stofflichen Verwertung des Mülls (z.B. um niedrige Abgasvorgaben einzuhalten) und werden daher i.A. nicht flexibel und strompreisgeführt, sondern dargebotsabhängig ausgelegt und betrieben (Fraunhofer IWES & Energy Brainpool, 2014).

³¹ Felten, Baginski, Weber (2017): KWK-Mindest- und Maximaleinspeisung – Die Erzeugung von Zeitreihen für die Energieystemmodellierung, HEMF Working Paper 10/2017.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

Tabelle 19: Vergleichsportfolio zur Berechnung von Deckungsbeiträgen

Parameter	Einheit	2017	2025	2035	2050
Elektrische Maximal	[MW _{el}]	320	320	320	320
leistung KWK1					
Elektrische Mindestlast KWK1	[MW _{el}]	120	120	120	120
Maximale Wärme	[MW _{th}]	350	350	350	350
leistung KWK1					
Elektrischer Wirkungsgrad KWK1	[-]	0,5	0,52	0,54	0,57
Brennstoffnutzungsgrad KWK1	[-]	0,83	0,84	0,85	0,88
Elektrische Maximal	[MW _{el}]	90	90	90	90
leistung KWK2					
Elektrische Mindestlast KWK2	[MW _{el}]	40	40	40	40
Maximale Wärme-	[MW _{th}]	150	150	150	150
leistung KWK2					
Elektrischer Wirkungsgrad KWK2	[-]	0,39	0,41	0,43	0,47
Brennstoffnutzungsgrad KWK2	[-]	0,76	0,78	0,82	0,88
Maximale Wärme	[MW _{th}]	430	430	430	430
leistung HK					
Maximale Wärme-	[MW _{th}]	80	110	150	200
leistung WS					
Maximale Speichergröße WS	[MWh _{th}]	620	840	1100	1500

Darüber hinaus wird dem Portfolio über alle Stützjahre eine Power-to-Heat-Anlage (P2H) mit 35 MW elektrischer Leistung und einem Wirkungsgrad von 99% als Wärmeerzeugungsalternative in Phasen niedriger Strompreise hinzugefügt.

Jede der in AP 5 betrachteten Wärmeerzeugungstechnologien wird folglich in einem Wärmenetz optimiert, dass neben der aktuell betrachteten Anlage aus den Anlagen KWK2, HK, WS und P2H besteht. Die Wärmenachfrage des Gesamtsystems wird ausgehend von der oben genannten, repräsentativen Fernwärmenachfragekurve des Jahres 2017 auf Basis der Summe der maximalen Wärmeleistungen der in diesem Portfolio untersuchten Wärmeerzeuger sowie der weiteren Wärmetechnologien des Referenzportfolios skaliert.

Da die erzielten Kostenvorteile der betrachteten Technologien im Vergleich mit der alternativen Wärmeerzeugungsanlage KWK1 nur die variablen Erzeugungskosten dieser miteinbeziehen, eine solche Anlage jedoch ebenfalls Fixkosten, sowie weitere, brennstoffunabhängige variable Kosten aufweist, müssen diese bei der Bewertung der errechneten, relativen Deckungsbeiträge ebenfalls berücksichtigt werden. Daher werden diese Fixkosten in den KWK-Fällen innerhalb des Investitionsbewertungstools, welches in AP 4.3 erstellt wurde, ebenfalls berücksichtigt.

AP 4.3 Wirtschaftlichkeitsanforderungen

In diesem Teilpaket wurden in enger Kooperation mit dem LUAT die untersuchten Technologien und technologischen Innovationen aus den Arbeitspaketen 2 und 3 im Hinblick auf ihre erwarteten zu deckenden Fixkosten untersucht. Dies ermöglicht in Kombination mit den in AP 5.2 zu ermittelnden Bewertungsergebnissen eine Aussage über die Wirtschaftlichkeit des Markteintritts der untersuchten Kraftwerke unter den getroffenen Szenarioannahmen.

Tabelle 20 zeigt einen Auszug einer Literaturrecherche bzgl. Investitionskosten unterschiedlicher Gastechnologien. Neben einer internationalen Referenzpublikation, dem World Energy Investment Outlook, sind Ergebnisse bzw. Annahmen aus einem Studienvergleich des DIW sowie einer Veröffentlichung aus dem Jahr 2018 von Bonforte et al. dargestellt. Des Weiteren ist für den Block "Fortuna" des Gas- und Dampfturbinenkraftwerks Lausward ein auf €/kWel normierter Kostenwert aus den Angaben einer Pressemitteilung der Stadtwerke Düsseldorf abgeschätzt worden. Nach etwa 2,5 Jahren Bauzeit wurde der Block "Fortuna" im Jahr 2016 in Betrieb genommen und gilt mit einem elektrischen Wirkungsgrad im Kondensationsbetrieb von 61% als das effizienteste Gaskraftwerk Deutschlands. Investitionskosten für den Bau und Wartung der Anlage betrugen in etwa 500 Millionen Euro. Der Block "Fortuna" hat eine elektrische Leistung von 595 Megawatt. Neben den oben genannten Quellen liefert eine Veröffentlichung des Instituts für Energie- und Umwelttechnik e.V. (IUTA) Kostenfunktionen zu einzelnen Komponenten eines Gaskraftwerks.³² Für den berücksichtigten Salzspeicher werden Investitionskosten in Höhe von 70€/kWh veranschlagt.³³ Zudem wird für die zusätzliche Luftvorwärmung ein Kostensatz von 60€/kW angenommen.³⁴

Technologie	€/kW _{el}	Quelle
CCGT	800	DIW Berlin 2013
OCGT	400	Studienvergleich
ССБТ	600-800	Energiesysteme der Zukunft
OCGT	375	Studie aus 2016
Gas- und Dampfturbinen-Block "Fortuna"		Pressemitteilung der Stadtwerke Düsseldorf 2016 ³⁵
Gas- und Dampfturbinen-Block "Fortuna" [595 MW _{el}]	840	Pressemitteilung der Stadtwerke Düsseldorf 2016 ³⁵
Gas- und Dampfturbinen-Block "Fortuna" [595 MW _{el}] CCGT	840 900	Pressemitteilung der Stadtwerke Düsseldorf 2016 ³⁵ World Energy Investment
Gas- und Dampfturbinen-Block "Fortuna" [595 MWel] CCGT OCGT	840 900 450	Pressemitteilung der Stadtwerke Düsseldorf 2016 ³⁵ World Energy Investment Outlook
Gas- und Dampfturbinen-Block "Fortuna" [595 MW _{el}] CCGT OCGT CCGT - CHP	840 900 450 1170	Pressemitteilung der Stadtwerke Düsseldorf 2016 ³⁵ World Energy Investment Outlook 2016 (IEA)

Tabelle 20: Investitionsausgaben relevanter Gastechnologien

³² Institut für Energie- und Umwelttechnik e.V. (IUTA), "Ableitung von Kostenfunktionen für Komponenten der rationellen Energienutzung" (2002)

³³ BVES, 2016 (Bundesverband für Energiespeicher): http://www.bves.de/wpcontent/uploads/2016/03/FactSheet thermisch sensibel Salzschmelze.pdf ³⁴ https://www.umweltbundesamt.at/fileadmin/site/publikationen/M172.pdf

³⁵ https://www.swd-ag.de/ueber-uns/presse/pressearchiv/pressemitteilungen-2016/ (28.1.2016)

Neben den Investitionsausgaben, welche üblicherweise in mehreren Schritten bzw. Zeitpunkten bis zum Ende der Bauphase getätigt werden, zählen jährlich anfallende Betriebs- und Wartungskosten (ohne Brennstoffkosten) zu den Fixkosten. Diese werden nachfolgend in Tabelle 21 für die in dieser Studie relevanten Technologien in Prozent der Gesamtinvestitionsausgaben angegeben und sind von den jährlichen Deckungsbeiträgen abzuziehen.

Tabelle 21: Betriebs-	und Wartungskosten	relevanter Gastechnologien	(in % der Investitionsausgaben)
	J		· · · · · · · · · · · · · · · · · · ·

Technologie	Bestandsanlage	2023	2050
		(Neuanlage)	(Neuanlage)
OCGT	1-4%	k.A.	3,5%
CCGT	3%	3%	3%
Motoren	Betriebskosten: < 3%	Betriebskosten: < 3%	Betriebskosten: 3%
	Wartungskosten: 4,5%	Wartungskosten: 4,5%	Wartungskosten: 2,5%

Quelle: Energiesysteme der Zukunft (2016)

Für eine präzise Berechnung der Wirtschaftlichkeit sind neben den anfallenden Kosten und den erzielbaren Deckungsbeiträgen die Zeitpunkte der jeweiligen Fälligkeiten der Investitionsbeträge entscheidend. Der hier als Referenzkraftwerk gelistete Block "Fortuna" wurde nach einer Planungsphase von drei Jahren und sechs Monaten sowie einer Bauphase von zwei Jahren und sechs Monaten in Betrieb genommen (2016)³⁶.

Um die Methodik der Wirtschaftlichkeitsrechnung zu erläutern, wird in Abbildung 22 für die abschließende Investitionsrechnung eine beispielhafte Bauphase von drei Jahren unterstellt. Dies bedeutet, dass das Kraftwerk drei Jahre nach "Spatenstich" in Betrieb geht und ab diesem Zeitpunkt erste Deckungsbeiträge erlöst werden, die jedoch nachschüssig bilanziert werden. Es wird zudem unterstellt, dass die ersten Investitionsausgaben zu Beginn der Bauphase getätigt werden. Bis zum Beginn der Betriebsphase folgen zwei weitere Investitionstranchen. Die Abbildung skizziert die zukünftigen Geldflüsse. Die modellierten Deckungsbeiträge der Stützjahre 2025, 2035 und 2050 bilden die Grundlage für eine lineare Interpolation der Deckungsbeiträge in den Zwischenjahren. Mithilfe der Kapitalwertmethode werden alle künftigen Deckungsbeiträge sowie die Investitionsausgaben auf den gleichen Zeitpunkt, die Fälligkeit der ersten Investitionssumme, diskontiert.

³⁶ Eine eigene Recherche zeigt, dass vergleichbare Kraftwerke eine Bauzeit von 24-36 Monaten benötigten. (Hassmann, Cluster Energietechnik (April 2017); Internetauftritte der Kraftwerke Leipheim, Trianel und Fortuna.)

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Abbildung 22 Schematische Abbildung der berücksichtigten Zahlungsströme

Tabelle 22: Symbolverzeichnis der Investitionsrechnung

Symbol	Bedeutung	Einheit
m	ausgewählte Technologie	
α _m	Rate der jährlichen Betriebs- und Wartungskosten [in % von der Investition]	%
DB _{j, m}	Deckungsbeitrag im Jahr j für Technologie m	€
i	Kapitalzinssatz	%
I _m	Investitionskosten der Technologie m	€
j	Laufindex für das Jahr j (nach Baubeginn/Investition des Kraftwerks)	
k	Dauer der Investitionsphase	
n	Nutzungsdauer der Technologien	
KW _m	Netto-Kapitalwert für die Technologie <i>m</i>	€

$$KW_{m} = -I_{0,m} - \sum_{j=1}^{k} \frac{I_{j,m}}{(1+i)^{j}} + \sum_{j=k+1}^{k+25} \frac{(DB_{j,m} - \alpha_{m}*I_{m})}{(1+i)^{j}} \left(+ \sum_{j=k+26}^{n} \frac{(DB_{j,m} - \alpha_{m}*I_{m})}{(1+i)^{j}} \right)$$
(1)
Investitionssumme
Investitionssumme
Innerhalb der Bauphase
Deckungsbeiträge der
Betriebsphase
Betriebsphase

Die Deckungsbeiträge werden einem in Microsoft Excel implementierten Investitionstool übergeben und dort den Kosten der Investition und Wartung gegenübergestellt. Nach der zuvor beschriebenen Methodik können somit Netto-Kapitalwerte (siehe Formel 1) für die zu untersuchenden Technologien und Szenarien abgebildet werden. Die entsprechenden Ergebnisse werden in Kapitel AP 5.2 diskutiert.

AP 5 Techno-ökonomische-ökologische Bewertung zukünftiger Kraftwerkskonzepte

In Arbeitspaket 5 wurden die zuvor entwickelten Modelle und Szenarien kombiniert. Im Verbund der gewählten technischen Anpassungen, wirtschaftlichen und politischen Randbedingungen sollte sich durch Jahresgangsimulationen herauskristallisieren welche Parameter das flexible Kraftwerk der Zukunft aufweisen muss, um den Transit zum Energiesystem 2050 bestmöglich zu unterstützen.

Dazu wurde zunächst in AP 5.1 die durch EWL in OptKWS abgebildete technische Modellierung der betrachteten flexiblen Kraftwerkskonzepte, sowie die entstehenden Kraftwerksfahrpläne durch den LUAT als technisch möglich verifiziert. In AP 5.2 wurden die ökonomischen Jahressimulationen durchgeführt und Deckungsbeiträge für die anschließende Investitionsrechnung ermittelt. AP 5.3 erweitert die ökonomischen Ergebnisse durch die genauere Betrachtung der ökologischen Auswirkungen der modellierten Technologien und nimmt eine abschließende Bewertung der Technologien vor.

Modellauswahl:

Aufgrund der Zeitaufwändigen Optimierung in OptKWS musste eine Auswahl an zu simulierenden Kraftwerkskonzepten getroffen werden. Tabelle 23 gibt einen Überblick über alle im Projekt entwickelten Kraftwerksmodelle, sowie die Auswahl der in AP 5 ausgewerteten.

Technologie	Konfiguration	Auswertung in AP 5
GuD Referenzkraftwerk	rein elektrisch	ја
GuD Referenzkraftwerk	KWK	Ja
GuD Referenzkraftwerk	KWK, Salzspeicher	Ja
GuD Referenzkraftwerk	KWK, Ruthsspeicher	nein
GuD Referenzkraftwerk	KWK, Abgasrückführung/ Abgaswärmetauscher	nein
GuD Referenzkraftwerk	KWK, Luftvorwärmung	ја
GuD Referenzkraftwerk	mit und ohne KWK, Methanolsynthese	nein
GuD 250MW-Klasse	rein elektrisch	ја
GuD 250MW-Klasse	KWK	ја
GuD 250MW-Klasse	KWK, Abgasrückführung/ Abgaswärmetauscher	nein
Motorenkraftwerk	rein elektrisch	Ja
Motorenkraftwerk	KWK	ја
Motorenkraftwerk	KWK mit zusätzlichem Dampfturbinenkreislauf	nein
Gasturbine	rein elektrisch	ја
Gasturbine	KWK	ја
Steinkohlekraftwerk	KWK	nein

Tabelle 23: Überblick über die Kraftwerksmodelle der Pre-Engineering Studie

Insgesamt wurden 19 unterschiedliche Kraftwerksanwendungen entwickelt (in Tabelle 23 teilweise zusammengefasst). Bei der Auswahl für AP 5 wurden in erster Linie ähnliche Konzepte gestrichen, so ließen z. B. die Datenblätter der GuD-Modelle mit thermischen Energiespeichern (TES) vermuten, dass

sie keine großen Unterschiede in der Optimierungsrechnung aufweisen würden. Hier wurde daher jeweils nur ein Konzept zu TES (Salzspeicher) und eines zur Ansaugluftvorwärmung/ Abgasrückführung (Vorwärmen über Anzapfdampf) gewählt.

Die Modelle zur Methanolsynthese und Kohlekraftwerken wurden aus den bereits unter AP 2.4 und AP 3.3 genannten Gründen ebenfalls aus der Betrachtung ausgeschlossen.

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

AP 5.1 Technische Jahressimulationen ausgewählter Kraftwerkskonzepte

Um eine möglichst realitätsnahe Abbildung der Kraftwerke in OptKWS zu gewährleisten sollte deren Implementierung durch parallele Jahressimulationen in Ebsilon kalibriert und validiert werden. Die Übertragung der Kraftwerksparameter in das Optimierungstool erfolgt dabei typischerweise als Kennlinie eines Wirkungsgrades oder Kraftstoffverbrauchs.

In Abbildung 23 ist zu erkennen, dass durch diese Vereinfachung Unterschiede im Kraftstoffverbrauch zwischen den beiden Modellen entstehen können. Hier ist in schwarz der Verlauf des Wirkungsgrads des Referenzkraftwerks über der Nettoleistung, sowie in schwarzgepunktet die dazugehörige Linearisierung dargestellt. Für den Fall einer stark gekrümmten Wirkungsgradkennline, wie z.B. unter Verwendung einer Luftvorwärmung hier in Rot dargestellt, würde eine einfache Linearisierung zu deutlichen Unterschieden in den Modellen führen. Daher wurde für die Luftvorwärmung eine stückweise Linearisierung vorgenommen, wie sie in Abbildung 23 in rotgestrichelt dargestellt ist.

Abbildung 23: Wirkungsgradkennlinien des Referenzkraftwerks und der Luftvorwärmung mit linearisiertem und stückweise linearisiertem Verlauf

Die letzten Ergebnisse der Kalibrierung und damit der Validierung der OptKWS-Implementierung werden hier in Arbeitspaket 5.1 diskutiert. Hierbei ist generell noch zwischen den Modellen mit Gasturbinen (also GuD-Kraftwerke und Gasturbinenkraftwerke) und den Gasmotoren aufgrund ihrer unterschiedlichen Betriebsstrategie zu unterscheiden. Während die auf Gasturbinen basierenden Kraftwerke eine Teillastfahrt durch Absenken der einzelnen Anlagenleistungen erreichen und damit ihren Wirkungsgrad senken, werden bei den Motorenkraftwerken ausschließlich einzelne Anlagen im modularen Verbund abgeschaltet. Das bedeutet, dass alle in Betrieb befindlichen Motoren grundsätzlich in Nennlast betrieben werden und der elektrische Wirkungsgrad der Gesamtanlage

damit als nahezu konstant angesehen werden kann. Dies spiegelt sich auch in einem sehr geringen Unterschied im Ergebnis der beiden Simulationstools bei den Motorenkraftwerken wider.

Zur Validierung der einzelnen Technologien wurden jeweils Szenarien und Jahre gewählt, die möglichst lange Betriebszeiten aufweisen, um genügend Punkte für den Vergleich beider Modelle zu bieten. In den meisten Fällen wurde hierzu das Szenario A1 im Stützjahr 2025 gewählt.

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Validierung:

GuD-Referenzkraftwerk:

Abbildung 24 ist die geordnete Jahresdauerlinie des Brennstoffverbrauchs In der Validierungsrechnung des Referenzkraftwerks in schwarz sowie die relative Abweichung zwischen den Modellen dargestellt. In dieser wie auch den folgenden Rechnungen wurde in Viertelstundenscheiben gerechnet, daher ergeben sich für die Validierung jeweils 35040 Viertelstunden (bzw. Datenpunkte). Im rein elektrischen Betrieb des Referenzkraftwerks werden kaum Teillastpunkte angefahren (135 Betriebsstunden), in Mindestlast wird das Kraftwerk 935 Stunden betrieben.

Im Diagramm ist zu erkennen, dass die Abweichung zwischen beiden Modellen in der Mindestlast am deutlichsten ist. Mit einem maximalen relativen Fehler von 0,94 % fällt die Differenz jedoch im Anbetracht der vereinfachten Darstellung in OptKWS sehr gering aus. Eine weitere Annäherung der Modellergebnisse wäre durch iterative Anpassung der Linearisierung für jeden einzelnen Simulationsfall im Optimierungsmodell möglich. Die hier ermittelten Abweichungen, sind in Tabelle 24 zusammengefasst. Hier bezeichnet die Zeile "Fehler Brennstoff" die auf das gesamte Jahr bezogene Differenz im Brennstoffverbrauch zwischen den beiden Modellen. Die Zeile "Absolute Fehlersumme" den aufsummierten Betrag der Differenzen über das gesamte Jahr.

Im weiteren Verlauf der Validierungen beziehen sich diese Werte jeweils auf den Massen- oder Energiestrom mit der größten relativen Abweichung zwischen den Simulationen (hier und bei allen GuD-Modellen den Brennstoffstrom bzw. die Brennstoffleistung). Aus dem Vergleich des Fehlers und der absoluten Fehlersumme wird ersichtlich, dass die Differenzen sich über das Jahr hinweg ausgleichen, also mal positiv und mal negativ ausfallen.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

Abbildung 24: Geordnete Jahresdauerlinie und relative Abweichung des Brennstoffverbrauchs zwischen den Simulationen des Referenzkraftwerks im Szenario A1 2025, Validierungsrechnung

Aufgrund ihrer geringen Größenordnung haben die Abweichungen keinerlei Auswirkung auf die Betriebsstrategie, die für das Referenzkraftwerk in OptKWS ermittelt wird. Durch die sehr geringe Differenz in der Jahressumme wird zudem eine hohe Genauigkeit in der Gewinnermittlung erreicht. Die Abbildung im Optimierungstool ist damit validiert.

Tabelle 24: Validierungsergebnisse des Referenzkraftwerks

Simulationsergebnisse		
Stromeinspeisung	4165	GWh/a
Wärmeeinspeisung	0	GWh/a
Brennstoffverbrauch	6881	GWh/a
Fehler Brennstoff	-663	kWh/a
Absolute Fehlersumme	23	GWh/a
Maximaler relativer Fehler	0,94	%

LEHRSTUHL FÜR **ENERGIEWIRTSCHAFT** PROF. DR. CHRISTOPH WEBER

GuD-Referenzkraftwerk mit KWK:

Die geordnete Jahresdauerlinie des Brennstoffverbrauchs des Referenzkraftwerks mit KWK und die relative Abweichung der Ergebnisse zwischen den verwendeten Modellen ist in Abbildung 25 dargestellt. Hier ist zusätzlich in Rot die jeweilige Fernwärmeauskopplung dargestellt. Neben der auf Fehlerguelle des linearisierten Brennstoffverbrauchs wird Seite 61 beschriebenen die Wärmeauskopplung mit einer weiteren Vereinfachung berechnet. Die "Kosten" der Wärmeauskopplung werden in OptKWS anhand einer Stromverlustkennziffer [MW_{th}/MW_{el}] dem hier betrachteten Modell berücksichtigt. Bei liegt diese Verlustkennziffer zwischen -0,232 MW_{th}/MW_{el} und -0,242 MW_{th}/MW_{el}. Diese nichtlinear verteilten Kosten werden in OptKWS als zwei konstante Verlustkennziffern vereinfacht, je eine für hohe und eine für niedrige Kraftwerkslast. Daraus ergeben sich bei den Berechnungen der GuD-KWK-Anlagen weitere Fehlerquellen.

Abbildung 25: Geordnete Jahresdauerlinie und relative Abweichung des Brennstoffverbrauchs zwischen den Simulationen des Referenzkraftwerks mit KWK im Szenario A1 2025, Validierungsrechnung

Trotz der weiteren Fehlerquelle bei GuD-KWK-Modellen konnten hier ähnlich gute Ergebnisse erzielt werden wie im rein elektrischen Betrieb. Die Kennwerte der Validierung sind hier in Tabelle 25 zusammengefasst.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Tabelle 25: Validierungsergebnisse des Referenzkraftwerks mit KWK

Simulationsergebnisse		
Stromeinspeisung	4324	GWh/a
Wärmeeinspeisung	1264	GWh/a
Brennstoffverbrauch	7653	GWh/a
Fehler Brennstoff	637	kWh/a
Absolute Fehlersumme	24,7	GWh/a
Root mean square error (RMSE)	3,25	MWth
Maximaler relativer Fehler	1,05	%

GuD-Referenzkraftwerk mit KWK und Salzspeicher:

Das Diagramm in Abbildung 26 zeigt einen Ausschnitt aus den geordneten Jahresdauerlinien des Brennstoffverbrauchs der Modelle mit KWK und KWK mit Salzspeicher im Szenario A1 über die Stützjahre 2025, 2035 und 2050. In diesem Vergleich ist ersichtlich, dass sich die Betriebsstrategie des Kraftwerks durch den Einsatz eines thermischen Energiespeichers nicht verändert. Im Vergleich der Simulationen kommt es kaum zu Abweichungen, sodass auch dieses Modell, trotz einer weiteren Fehlerquelle (Ein- und Ausspeichern aus dem TES wird hier mit konstanter Stromverlustkennziffer berechnet), validiert werden kann.

Abbildung 26: Ausschnitt aus den Jahresdauerlinien des Brennstoffverbrauchs der KWK und KWK-TES-Modelle über alle Stützjahre im Szenario A1

Die Ergebnisse der Validierung sind in Tabelle 26 zusammengefasst. Die Differenz zwischen den Modellen bewegt sich in derselben Größenordnung wie beim KWK-Modell, der maximale relative Fehler ist mit 1,05 % (nach Rundung) identisch.

Tabelle 26: Validierungsergebnisse des Referenzkraftwerks mit KWK und TES

Simulationsergebnisse		
Stromeinspeisung	4314	GWh/a
Wärmeeinspeisung	1265	GWh/a
Brennstoffverbrauch	7649	GWh/a
Fehler Brennstoff	603	kWh/a
Absolute Fehlersumme	16,4	GWh/a
RMSE	2,489	\mathbf{MW}_{th}
Maximaler relativer Fehler	1,05	%

LEHRSTUHL FÜR **ENERGIEWIRTSCHAFT** PROF. DR. CHRISTOPH WEBER

GuD-Referenzkraftwerk mit KWK und Luftvorwärmung:

Wie auf Seite 61 beschrieben wurde für das Modell der Luftvorwärmung ein alternativer Modellierungsansatz mit einer stückweise linearisierten Brennstoffverbrauchskennlinie gewählt, da die starke Krümmung dieser hier sonst zu höheren Ungenauigkeiten geführt hätte. Insgesamt wurde mit dieser Methode sogar eine höhere Modellgüte erreicht als mit den zuvor diskutierten Modellen.

Abbildung 27:Geordnete Jahresdauerlinie und relative Abweichung des Brennstoffverbrauchs zwischen den Simulationen des Referenzkraftwerks mit KWK und Luftvorwärmung im Szenario A1 2025, Validierungsrechnung

Abbildung 27 sind die geordnete Jahresdauerlinie und relative Abweichung In des Brennstoffverbrauchs zwischen den Simulationen des Referenzkraftwerks mit KWK und Luftvorwärmung im Szenario A1 2025, sowie die zugehörige Wärmeauskopplung dargestellt. Zwar ist hier der größte relative Fehler (bei ca. 28000 [1/4 h]) mit 1,15 % höher als zuvor, jedoch ist der typische Fehler des Modells, hier mit dem root mean square error (RMSE) beziffert deutlich niedriger. In diesem Fall liegt der hohe relative Fehler in einem Bereich grenzwertiger Konvergenz im Ebsilon Modell, bei dem vereinzelte Betriebspunkte manuell unter Anpassung der Regelparameter nachgerechnet werden mussten. Der resultierende Fehler liegt hier also auf Seite der thermodynamischen Simulation und kann auch aufgrund seiner immer noch geringen Auswirkung auf das Gesamtergebnis ignoriert werden. Tabelle 27 gibt einen Überblick über die Validierungskennzahlen des Modells.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

Tabelle 27: Validierungsergebnisse des Referenzkraftwerks mit KWK und Luftvorwärmung

Simulationsergebnisse		
Stromeinspeisung	4227	GWh/a
Wärmeeinspeisung	1271	GWh/a
Brennstoffverbrauch	7468	GWh/a
Fehler Brennstoff	-20	kWh/a
Absolute Fehlersumme	7,1	GWh/a
RMSE	1,537	\mathbf{MW}_{th}
Maximaler relativer Fehler	1,15	%

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

GuD-250MW-Klasse:

Die Wirkungsgradkennlinie des GuD-Modells aus der 250MW-Klasse zeigt einen wesentlich geradlinigeren Verlauf als das des wesentlich komplexeren Modells des Referenzkraftwerks. Die lineare Interpolation des Brennstoffverbrauchs, die in OptKWS Anwendung findet, liegt damit wesentlich näher am thermodynamischen Modell als bei den zuvor Betrachteten Simulationen. In Abbildung 28 ist ein Vergleich der Kennlinie und deren lineare Interpolation gezeigt.

Abbildung 28: Kennlinie des Brennstoffverbrauchs des 250MW-GuD-Modells und deren lineare Interpolation

Im rein elektrischen Betrieb fällt die Differenz zwischen den beiden Modellen daher sehr viel geringer aus als bei den zuvor betrachteten Anlagen. Tabelle 28 gibt einen Überblick über die Validierungskennzahlen der Anlage. Der höchste relative Fehler zwischen den Modellen fällt hier mit einer Abweichung von 10⁻⁶ % sehr niedrig aus und liegt nur knapp über der Modellgenauigkeit der thermodynamischen Simulationen (10⁻⁷ %).

Tabelle 28: Validierungsergebnisse des Modells des GuD der 250MW-Klasse

Simulationsergebnisse		
Stromeinspeisung	1612	GWh/a
Brennstoffverbrauch	3071	GWh/a
Fehlersumme	<10 ⁻⁵	%
Maximaler relativer Fehler	10 ⁻⁶	%

GuD-250MW-Klasse mit KWK:

Bei zusätzlicher Wärmeauskopplung wird dem Modell wiederum eine weitere Fehlerquelle durch Vereinfachung der Stromverlustkennziffer zugefügt. Wie in Tabelle 29 zu sehen ist, steigt dadurch der maximale relative Fehler deutlich. Insgesamt fallen die Abweichungen zwischen den Modellen jedoch geringer aus als bei den Modellen des Referenzkraftwerks.

Tabelle 29: Validierungsergebnisse des Modells des GuD der 250MW-Klasse mit KWK

Simulationsergebnisse		
Stromeinspeisung	1593	GWh/a
Wärmeeinspeisung	610	GWh/a
Brennstoffverbrauch	3329	GWh/a
Fehlersumme	<2*10 ⁻³	%
Maximaler relativer Fehler Fernwärme	0,69	%

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Gasturbine Peaker:

Ähnlich wie bei dem GuD der 250MW-Klasse ist die Kennlinie der Brennstoffleistung der für das Gasturbinenkraftwerk gewählten Anlage nahezu gerade. Im Diagramm in Abbildung 29 ist die hier verwendete Kennlinie zusammen mit einer linearen Interpolation dargestellt. Die beiden Graphen liegen nahezu aufeinander und zeigen nur sehr geringe Abweichungen über den gesamten Verlauf.

Abbildung 29: Kennlinie des Brennstoffverbrauchs der Gasturbine SGT-A65 und deren lineare Interpolation

Dementsprechend sind die Ergebnisse der Validierungsrechnung sehr exakt. Die Höhe des größten relativen Fehlers zwischen den beiden Modellen liegt hier im Bereich der Modellgüte der thermodynamischen Simulationen in Ebsilon. Die Kennzahlen der Validierung sind in Tabelle 30 zusammengefasst.

Tabelle 30: Validierungsergebnisse des Gasturbinenkraftwerks

Simulationsergebnisse		
Stromeinspeisung	231	GWh/a
Brennstoffverbrauch	544	GWh/a
Fehlersumme	<10 ⁻⁸	%
Maximaler relativer Fehler	10 ⁻⁷	%

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

Gasturbine KWK:

Wie auch zuvor bei den GuD-KWK-Anlagen beschrieben, führt die Abbildung der Wärmeauskopplung zu weiteren Abweichungen zwischen den Modellen. So ist die Wärmeauskopplung beim Gasturbinenkraftwerk mit einem deutlich höheren Fehler belegt als die rein elektrische Variante. Dementsprechend findet sich die höchste relative Abweichung zwischen den Modellen im Bereich der Wärmeauskopplung, wie in Tabelle 31 zu sehen ist.

Tabelle 31: Validierungsergebnisse des Gasturbinenkraftwerks mit KWK

Simulationsergebnisse		
Stromeinspeisung	319	GWh/a
Wärmeeinspeisung	231	GWh/a
Brennstoffverbrauch	754	GWh/a
Fehlersumme Fernwärme	<0,1	%
Maximaler relativer Fehler Fernwärme	0,8	%

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

Gasmotoren Peaker:

Die Betriebsstrategie der modularen Motorenkraftwerke sieht keine Teillastfahrten der einzelnen Motoren vor, stattdessen werden zur Absenkung der Kraftwerksleistung einzelne Motoren komplett abgeschaltet. Abgesehen von instationären An- und Abfahrvorgängen ergibt sich so theoretisch ein konstanter Wirkungsgrad des Kraftwerks, bei eingeschränkter Betriebsflexibilität. Wie auf Seite 61 bereits beschrieben führt diese Betriebsweise in den hier verwendeten Modellen zu Ergebnissen sehr hoher Genauigkeit. Die Kennzahlen der Validierung sind in Tabelle 32 dargestellt.

Tabelle 32: Validierungsergebnisse des Gasmotorenkraftwerks

Simulationsergebnisse		
Stromeinspeisung	1153	GWh/a
Brennstoffverbrauch	2576	GWh/a
Fehlersumme Stromeinspeisung	0,576	GWh/a
Maximaler relativer Fehler Stromeinspeisung	0,17	%

Gasmotoren KWK:

Die Wärmeauskopplung beim Gasmotorenkraftwerk hat keinen direkten Einfluss auf die Stromerzeugung, da hier die Wärmeenergie aus Kühl- und Abgasmassenströmen gewonnen wird, welche sonst an die Umwelt abgegeben werden. Die Gasmotoren mit KWK unterliegen daher keinem zusätzlichen Fehler im Modellvergleich und erreichen wie die Variante ohne KWK hohe Genauigkeiten. Einen Überblick über die Validierungskennzahlen gibt Tabelle 33.

Tabelle 33: Validierungsergebnisse des Gasmotorenkraftwerks mit KWK

Simulationsergebnisse		
Stromeinspeisung	1164	GWh/a
Wärmeeinspeisung	1164	GWh/a
Brennstoffverbrauch	2593	GWh/a
Fehlersumme Brennstoffverbrauch	0,07	GWh/a
Maximaler relativer Fehler Brennstoffverbrauch	2,75*10 ⁻³	%

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

AP 5.2 Ökonomische Jahressimulationen ausgewählter Kraftwerkskonzepte

Für die Bewertung der zehn ausgewählten Technologien mithilfe der in AP 4.2 und 4.3 entwickelten Methodik wurden insgesamt 10 x 3 (Stützjahre) x 5 (Szenarien) = 150 Jahressimulationen (bestehend aus einem Lauf des stochastischen Optimierungsmodells zur Day-ahead-Vermarktung plus einem Lauf des Modells des kontinuierlicher Intradayhandels) durchgeführt. Für einen Teil der Technologien (jene mit Wärmeauskopplung, siehe AP 4.2) ist außerdem eine Vergleichsrechnung gegen eine Referenz-KWK-Anlage notwendig. Eine Übersicht der 10 Fälle findet sich in Tabelle 34, in deren Reihenfolge auch die Ergebnisse der Technologien vorgestellt werden:

Tabelle 34: Laufübersicht Jahressimulationen

Nr.	Seite	Technologie	Betrachtungsweise	Genutztes Referenzportfolio				
1	76	Referenzkraftwerk (RK) GuD	rein elektrisch	-				
2	78	RK GuD im KW/K-Eall ³⁷	in	KWK1 auf 300 MW $_{th}$ skaliert in				
2	70		Vergleichsportfolio	Vergleichsportfolio				
2	01	Thermischer Flüssigsalzspeicher	in	2				
3	01	(mit RK GuD im KWK-Fall)	Vergleichsportfolio	2				
	00	GuD im KWK-Fall mit	in	KWK1 auf 300 MW $_{th}$ skaliert in				
4	00	Luftvorwärmung	Vergleichsportfolio	Vergleichsportfolio				
5	86	GuD 250 MW	rein elektrisch	-				
6	00		in	KWK1 auf 160 MW_{th} skaliert in				
U	88		Vergleichsportfolio	Vergleichsportfolio				
7	89	29 Gasmotoren ³⁸	rein elektrisch	-				
0	02	29 Gasmataran im KWK Fall	in	KWK1 auf 300 MW $_{th}$ skaliert in				
0	92	29 Gasmotoren ini Kwk-Pan	Vergleichsportfolio	Vergleichsportfolio				
9	95	Gasturbine	rein elektrisch	-				
10	10 07	Gasturbing im KWK-Eall	in	KWK1 auf 70 MW_{th} skaliert in				
10	וכ		Vergleichsportfolio	Vergleichsportfolio				

³⁷ Hierbei ist zu beachten, dass auf den Folgeseiten in den KWK-Fällen zwar die Kosten, jedoch nicht die Erlöse anlagenscharf bestimmt werden (können), da die Strom- und Regelleistungsvermarktung über alle stromerzeugenden und -verbrauchenden Anlagen des Portfolios gleichzeitig erfolgt. Im Falle der Regelleistungsvermarktung kann somit im Portfoliofall nicht in jedem Zeitschritt die vorgehaltene Regelleistung eindeutig einer Anlage zugerechnet werden. Aufgrund der Betrachtung verschiedener sequentieller Stromvermarktungsoptionen ist ebenfalls nicht eindeutig bestimmbar, welche gehandelte MWh Strom welches kurzfristigen Strommarktes zu welchem aktuellen Marktpreis welcher Anlage zuzurechnen ist. Daher wird im Folgenden in den KWK-Fällen erlösseitig nur das Gesamtportfolioergebnis angegeben.

³⁸ In den Fällen 7 und 8 werden 29 Gasmotoren (Leistung ca. 10 MWth) genutzt, womit in Fall 8 eine Gesamtwärmeleistung von ca. 300 MWth resultiert. Somit soll eine gewisse Vergleichbarkeit der wirtschaftlichen Ergebnisse zwischen Fall 2 und 4, sowie Fall 8 gewährleistet werden.

Zur Reduktion der Rechenkomplexität werden diese 29 Anlagen jedoch zu einem virtuellen Motor reduziert, wobei die Variation in der Produktion durch eine ganzzahlige Variable, die die Anzahl produzierender Motoren beschreibt, erfolgt. Durch die damit erzielte Eindeutigkeit des Einsatzergebnisses, sowie der niedrigeren Anzahl optimierter Anlagen in der Optimierung konnte eine deutliche Verbesserung der Rechenperformance bei gleichzeitiger Beibehaltung der Ergebnisgüte erzielt werden.

UNIVERSITÄT

1. Referenzkraftwerk GuD

Das Referenzkraftwerk erzielt in allen Szenarien einen positiven Kapitalwert. Hierbei wird der höchste Kapitalwert in Szenario C (Market-Oriented Energy Transformation) erzielt. Die langfristig höchsten Deckungsbeiträge werden jedoch in Szenario A1 ("Energy Transformation at its best" bei gleichzeitiger Laststeigerung) erzielt. Eine Übersicht der Deckungsbeiträge und Kapitalwerte findet sich in Abbildung 30. Der Barwert (ohne Investitionsausgaben) bezogen auf die installierte elektrische Leistung beträgt zwischen 844 €/kW (Szenario A2) und 1.106 €/kW (Szenario C).

Abbildung 30: Deckungsbeiträge und Kapitalwerte für Referenzkraftwerk GuD

In den früheren Stützjahren erzielt die Anlage eine höhere Anzahl an Produktions- und Volllaststunden als in späteren Jahren. Die Differenz zwischen beiden Kennzahlen sinkt im Zeitverlauf ab. Dies weist auf eine sinkende Anzahl von Produktionsstunden in Teillast hin. In den Szenarien A1, A2 und N steigen sowohl die Erlöse als auch die Kosten der Anlage langfristig, in den Szenarien B und C fallen beide Werte hingegen ab, wie Tabelle 35 entnommen werden kann. Durch eine erhöhte Anzahl an Starts in den späteren Stützjahren steigen auch die kumulierten Startkosten der Anlage im Zeitverlauf an. Die Auswirkungen der unterschiedlichen Preisverläufe auf die Fahrweisen der Anlage können beispielhaft auch anhand von Abbildung 31 nachvollzogen werden. Während im Jahr 2025 die Anlage häufig auch bei kurzen Zeitperioden mit Preisen unterhalb ihrer variablen Kosten in Teillast fährt, was durch die hohen Startkosten und die relativ lange Mindeststillstandszeit der Anlage von einer Stunde bedingt wird, wird sie im Jahr 2050 häufig aufgrund längerer Niedrigpreisperioden ganz ausgeschaltet und fährt nur selten in Teillast.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Tabelle 35: Betriebskennzahlen Referenzkraftwerk GuD

Szenario		A1			A2			В			С			N	
Stützjahr	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050
Volllaststunden [h]	7038	5542	2670	7852	4998	2599	7022	6175	4272	8072	6608	4185	7067	5567	2502
Produktionsstunden	7478	5698	2853	8297	5210	2779	7459	6360	4521	8347	6772	4448	7530	5748	2696
[h]															
Erlöse ¹	249	290	408	267	224	306	257	321	235	339	340	223	249	290	369
[Mio €]															
Brennstoff- kosten¹ [Mio €]	176	205	323	187	158	230	185	229	178	236	241	173	177	206	293
Davon CO₂- Kosten ¹ [Mio €]	44	93	262	40	57	171	37	80	55	66	81	53	44	93	0
Startkosten ¹ [Mio €]	1	4	4	0,5	4	4	1	3	4	0,5	2	4	1	4	4

¹: gerundet auf eine Nachkommastelle für Werte <0,5, ansonsten gerundet auf ganze Zahlen

Abbildung 31: Elektrischer Fahrplan des Referenzkraftwerks GuD für eine Beispielwoche im Szenario A1 im Jahr 2025 und 2050

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

2. RK GuD im KWK-Fall

Das Referenzkraftwerk erzielt im KWK-Fall in allen Szenarien einen positiven Kapitalwert, wenn die Investitionskosten der Vergleichsanlage berücksichtigt werden. Hierbei wird, ähnlich zu Fall 1, der höchste Kapitalwert in Szenario C ("Market-Oriented Energy Transformation") erzielt. Die langfristig höchsten Deckungsbeiträge werden jedoch in Szenario A1 ("Energy Transformation at its best" bei gleichzeitiger Laststeigerung) erzielt. Eine Übersicht der Deckungsbeiträge und Kapitalwerte inkl. Vergleichsinvestitionskostenberücksichtigung findet sich in **Abbildung 32**. Ohne Berücksichtigung dieser Vergleichskosten würde die Anlage in keinem Szenario ausreichende Deckungsbeiträge erzielen und müsste die entstehende Lücke durch zusätzliche Wärmeerlöse schließen. Der Barwert (ohne Investitionsausgaben) bezogen auf die installierte elektrische Leistung beträgt zwischen 543 €/kW (Szenario A2) und 728 €/kW (Szenario C).

Abbildung 32: Deckungsbeiträge und Kapitalwerte Referenzkraftwerk GuD im KWK-Fall

In den früheren Stützjahren erzielt die Anlage eine höhere Anzahl an Produktionsstunden, elektrischen Volllaststunden und Wärmevolllaststunden als in späteren Jahren. Die Differenz zwischen Produktionsstunden und Volllaststunden sinkt im Zeitverlauf stark ab. Dies weist auf eine sinkende Anzahl von Produktionsstunden in Teillast hin. Dieser Effekt ist insbesondere für die Wärmevolllaststunden 2050 in den Szenarien A1, A2 und N stärker ausgeprägt, was in diesen Fällen auf eine Ablösung der GuD-Technologie als günstigste Wärmegestehungsalternative zwischen 2035 und 2050 hinweist. Daher findet in diesen Szenarien 2050 ein verstärkt stromgeführter Betrieb der Anlage statt. In diesen Szenarien steigen sowohl die Erlöse des Gesamtportfolios, als auch die Kosten der Anlage langfristig, wie **Tabelle 36** entnommen werden kann. In den Szenarien B und C sinken Erlöse des Portfolios und Kosten der Anlage hingegen ab 2035 wieder ab.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Tabelle 36: Betriebskennzahlen Referenzkraftwerk GuD im KWK-Fall

Szenario		A1			A2			В			С			N	
Stützjahr	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050
Volllaststunden elektrisch ¹ [h]	7288	5796	3103	7711	5523	2958	7327	6460	4815	7838	6851	5070	7289	5793	2932
Wärmevolllast- stunden ¹ [h]	4360	3586	1943	4560	3397	1796	4333	3844	3117	4572	3961	3247	4404	3595	1818
Produktions- stunden ¹ [h]	8512	6577	3465	8740	6407	3318	8504	7341	5548	8711	7753	5905	8507	6576	3272
Erlöse Portfolio gesamt ^{1,2} [Mio €]	282	330	511	295	263	372	292	365	282	372	384	283	282	329	466
Brennstoffkosten ¹ [Mio €]	196	231	401	197	189	280	208	258	216	245	268	227	196	231	367
Davon CO₂- Kosten¹ [Mio €]	49	104	326	42	68	208	42	90	67	68	90	69	49	104	0
Startkosten ¹ [Mio €]	0,4	3	4	0,1	3	4	0,4	2	4	0,1	2	4	1	3	4
Brennstoffkosten Portfolio gesamt¹ [Mio €]	229	278	550	229	229	392	242	307	263	287	319	272	228	278	512
Davon CO₂- Kosten ¹ [Mio €]	57	126	447	49	83	291	48	107	81	80	107	83	57	126	0
Startkosten Portfolio gesamt¹ [Mio €]	1	1	2	0,2	1	2	0,4	1	2	0,2	1	2	0,4	1	2

¹: gerundet auf eine Nachkommastelle für Werte <0,5, ansonsten gerundet auf ganze Stelle, ²: ohne Wärmeerlöse

Die Auswirkungen der unterschiedlichen Preisverläufe auf die Fahrweisen der Anlage können beispielhaft anhand von Abbildung 33 und Abbildung 34 nachvollzogen werden. Während im Jahr 2025 die Anlage häufig bei Preisen unterhalb ihrer variablen Kosten in Teillast fährt, da sie die günstigste oder zweitgünstigste Wärmebereitstellungsalternative im Netz darstellt³⁹, wird sie im Jahr 2050 in den Szenarien A1, A2 und N häufig aufgrund längerer Niedrigpreisperioden ganz ausgeschaltet und fährt nur selten in Teillast. Der Heizkessel stellt in diesen Momenten eine zusätzliche, günstigere Wärmebereitstellungsalternative dar und übernimmt die Wärmeversorgung, sobald der Wärmespeicher seinen Energiegehalt entladen hat.

³⁹ Bei niedrigen Strompreisen, insbesondere negativen Preisen, stellt die Power-to-Heat-Anlage eine günstigere Möglichkeit zur Wärmebereitstellung dar. Diese kann jedoch aufgrund ihrer limitierten Größe meist nicht die gesamte Wärmenachfrage bedienen.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Abbildung 33: Elektrischer Fahrplan und Wärmefahrplan des Referenzkraftwerks GuD im KWK-Fall für eine Beispielwoche im Jahr 2025, Szenario A1

Abbildung 34: Elektrischer Fahrplan und Wärmefahrplan des Referenzkraftwerks GuD im KWK-Fall für eine Beispielwoche im Jahr 2050, Szenario A1

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

3. Thermischer Flüssigsalzspeicher (mit RK GuD im KWK-Fall)

Der thermische Salzspeicher erzielt in allen Szenarien einen positiven Netto-Kapitalwert (Abbildung 35). Die Deckungsbeiträge des Salzspeichers steigen mit steigender Volatilität der Strompreise. Entsprechend sind die Deckungsbeiträge in dem Stützjahr 2050 in den Szenarien A1 und N um ca. 1,5 Mio. Euro höher als in anderen Szenarien oder Stützjahren.

Abbildung 35: Deckungsbeiträge und Kapitalwerte Thermischer Flüssigsalzspeicher (mit RK GuD im KWK-Fall)

Da der Salzspeicher nur bei einer angeschalteten KWK-Anlage verwendet werden kann, wird die KWK-Anlage mit Salzspeicher anders gefahren und vermarktet als eine KWK-Anlage ohne Salzspeicher, was in einer Wirtschaftlichkeitskalkulation mitbeachtet werden muss. Daher wird für die Bewertung die Differenz zu einem Portfolio ohne Salzspeicher herangezogen. In Tabelle 37 sind Kennzahlen des Portfolios angegeben, um den Unterschied in der Vermarktung und Fahrweise der KWK-Anlage mit Salzspeicher zu zeigen. Die Optimierung des Salzspeicher scheint sich im Stützjahr 2025 nur wenig auf die Fahrweise der KWK-Anlage auszuwirken. Im Jahr 2035 und 2050 hingegen scheint es von Vorteil zu sein, die Fahrweise der KWK-Anlage anzupassen, um den Salzspeicher nutzen zu können. In Abbildung 36 ist der elektrische Fahrplan für zwei exemplarische Wochen abgebildet. Auf der linken Seite der Abbildung ist zu sehen, wie der Salzspeicher im Jahr 2025 die Preisunterschiede ausnutzt, um einen Profit zu erwirtschaften. Auf der rechten Seite sieht man eine Woche im Jahr 2050, in der, trotz großer Preisunterschiede der Salzspeicher nicht häufig genutzt werden kann, da in Stunden mit niedrigen Preisen die KWK-Anlage ausgeschaltet wird.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Tabelle 37: Betriebskennzahlen Thermischer Flüssigsalzspeicher (mit RK GuD im KWK-Fall)

Szenario		A1			A2			В			с			N	
Stützjahr	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050
Zusätzliche Betriebsstunden RK GuD KWK-Anlage [h]	2,5	5	-32	-11,8	-12,3	-17	-1	-10,5	-10	-1,8	-20	-5,5	-2,5	-22,3	-10
Zusatzerlöse¹ zu Fall 2 [Mio €]	0,55	0,84	-1,66	0,31	0,06	-0,04	0,25	0,16	0,24	-0,12	-0,19	0,62	0,22	0,55	0,84
Zusätzliche Brennstoffkosten¹ zu Fall 2 [Mio €]	0,14	0,03	-3,17	-0,15	-0,48	-1,06	-0,08	-0,55	-0,50	-0,42	-0,78	-0,27	0,10	0,14	0,03
Davon zusätzliche CO₂-Kosten¹ [Mio €]	0,04	0,01	-2,57	-0,03	-0,17	-0,79	-0,02	-0,19	-0,15	-0,12	-0,26	-0,08	0,02	0,04	0,01
Zusätzliche Start- kosten¹ [Mio €]	0,00	-0,04	-0,26	0,00	-0,06	-0,14	-0,01	-0,11	-0,06	0,01	-0,06	-0,10	-0,03	0,00	-0,04

Abbildung 36: Elektrischer Fahrplan und Wärmefahrplan des Referenzkraftwerks GuD im KWK-Fall mit thermischen Salzspeicher für eine Beispielwoche in den Jahren 2025 und 2050, Szenario A1

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT **ROF. DR. CHRISTOPH WEBER**

4. GuD im KWK-Fall mit Luftvorwärmung

Das GuD-Kraftwerk mit Luftvorwärmung (LuVo) erzielt im KWK-Fall in allen Szenarien einen positiven Kapitalwert, wenn die Investitionskosten der Vergleichsanlage berücksichtigt werden. Hierbei wird, ähnlich zu Fall 2, der höchste Kapitalwert in Szenario C ("Market-Oriented Energy Transformation") erzielt. Die langfristig höchsten Deckungsbeiträge werden jedoch in Szenario A1 ("Energy Transformation at its best" bei gleichzeitiger Laststeigerung) erzielt. Eine Übersicht der Deckungsbeiträge und Kapitalwerte inkl. Berücksichtigung der Investitionsvergleichskosten findet sich in Abbildung 37. Ohne Berücksichtigung dieser Vergleichskosten würde die Anlage in keinem Szenario ausreichende Deckungsbeiträge erzielen und müsste die entstehende Lücke durch zusätzliche Wärmeerlöse schließen. Der Barwert (ohne Investitionsausgaben) bezogen auf die installierte elektrische Leistung beträgt zwischen 552 €/kW (Szenario A2) und 726 €/kW (Szenario C).

Im Vergleich zu Fall 2 fällt auf, dass die GuD-Anlage mit LuVo lediglich in Szenario A2 ("Energy Transformation at its best" ohne ausgeprägte Laststeigerung) einen höheren Kapitalwert erzielt als das RK GuD im KWK-Fall. Im Stützjahr 2025 wird mit LuVo jedoch in allen Szenarien ein höherer Deckungsbeitrag erzielt. Hieraus lässt sich schließen, dass der höhere Teillastwirkungsgrad der Anlage mit LuVo, welcher zulasten des Volllastwirkungsgrades geht, sich in Jahren mit höherer Teillastproduktion wirtschaftlich positiv auswirkt, langfristig jedoch insbesondere in Szenario A1 und N ("Energy Transformation at its best- zero emissions") der Volllastwirkungsgrad eine übergeordnete Rolle spielt.

Abbildung 37: Deckungsbeiträge und Kapitalwerte GuD im KWK-Fall mit Luftvorwärmung

In den früheren Stützjahren erzielt die Anlage eine höhere Anzahl an Produktionsstunden, sowie elektrischen Volllaststunden und Wärmevolllaststunden als in späteren Jahren. Die Differenz zwischen Produktionsstunden und Volllaststunden sinkt im Zeitverlauf stark ab. Dies weist auf eine sinkende Anzahl von Produktionsstunden in Teillast hin. Dieser Effekt ist insbesondere für die Wärmevolllaststunden 2050 in den Szenarien A1, A2 und N stärker ausgeprägt, was in diesen Fällen auf eine Ablösung der GuD-Technologie als günstigste Wärmegestehungsalternative zwischen 2035

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

und 2050 hinweist. Daher findet in diesen Szenarien 2050 ein verstärkt stromgeführter Betrieb der Anlage statt. In diesen Szenarien steigen sowohl die Erlöse des Gesamtportfolios, als auch die Kosten der Anlage langfristig, wie Tabelle 38 entnommen werden kann. In den Szenarien B und C sinken Erlöse und Kosten der Anlage hingegen ab 2035 wieder ab.

Tabelle 38: Betriebskennzahlen GuD im KWK-Fall mit Luftvorwärmung

Szenario		A1			A2			В			С			N	
Stützjahr	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050
Volllaststunden elektrisch ¹ [h]	7265	5735	3113	7673	5465	2956	7308	6414	4831	7813	6841	5045	7247	5789	2929
Wärmevolllaststu nden ¹ [h]	4340	3547	1938	4563	3351	1773	4343	3791	3151	4567	3932	3263	4335	3576	1790
Produktionsstund en¹ [h]	8502	6470	3481	8728	6319	3307	8517	7271	5585	8696	7737	5886	8468	6559	3269
Erlöse Portfolio gesamt ^{1,2} [Mio €]	278	322	502	291	258	367	288	358	278	367	377	278	278	323	458
Brennstoffkosten ¹ [Mio €]	191	224	395	192	183	274	203	251	213	239	263	221	191	226	359
Davon CO₂- Kosten¹ [Mio €]	48	101	321	41	66	204	41	87	66	67	88	68	48	102	0
Startkosten¹ [Mio €]	0,5	3	4	0,1	3	4	0,4	2	4	0,1	2	3	0,5	3	4
Brennstoffkosten Portfolio gesamt¹ [Mio €]	224	271	543	224	223	386	237	301	259	281	314	266	223	273	504
Davon CO₂- Kosten¹ [Mio €]	56	123	441	48	80	287	47	105	80	78	105	82	56	124	0
Startkosten Portfolio gesamt¹ [Mio €]	1	4	5	0,2	3	5	1	3	4	0,2	2	4	1	4	5

¹: gerundet auf eine Nachkommastelle für Werte <0,5, ansonsten gerundet auf ganze Stelle, ²: ohne Wärmeerlöse

Die Auswirkungen der unterschiedlichen Preisverläufe auf die Fahrweisen der Anlage können beispielhaft anhand von Abbildung 38 und Abbildung 39 nachvollzogen werden. Während im Jahr 2025 die Anlage häufig bei Preisen unterhalb ihrer variablen Kosten in Teillast fährt, da sie die günstigste oder zweitgünstigste Wärmebereitstellungsalternative im Netz darstellt, wird sie im Jahr 2050 in den Szenarien A1, A2 und N häufig aufgrund längerer Niedrigpreisperioden ganz ausgeschaltet und fährt nur selten in Teillast. Der Heizkessel stellt in diesen Momenten eine zusätzliche, günstigere Wärmebereitstellungsalternative dar und übernimmt die Wärmeversorgung, sobald der Wärmespeicher seinen Energiegehalt entladen hat.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Abbildung 38: Elektrischer Fahrplan und Wärmefahrplan des GuD mit LuVo im KWK-Fall für eine Beispielwoche im Jahr 2025, Szenario A1

Abbildung 39: Elektrischer Fahrplan und Wärmefahrplan des GuD mit LuVo im KWK-Fall für eine Beispielwoche im Jahr 2050, Szenario A1

5. GuD 250 MW

Die GuD-Anlage der 250 MW-Klasse erzielt nur in Szenario C ("Market-Oriented Energy Transformation") einen positiven Kapitalwert. Während in Szenario A1 und Szenario N nur knapp negative Kapitalwerte erzielt werden, sind die Finanzierungslücken in Szenario A2 und Szenario B substanziell. Die langfristig höchsten Deckungsbeiträge werden dennoch in Szenario A1 ("Energy Transformation at its best", mit gleichzeitiger Laststeigerung) erzielt. Eine Übersicht der Deckungsbeiträge und Kapitalwerte findet sich in Abbildung 40. Der Barwert (ohne Investitionsausgaben) bezogen auf die installierte elektrische Leistung beträgt zwischen 545 €/kW (Szenario A2) und 687 €/kW (Szenario C). Die Unterschiede in der Gesamtwirtschaftlichkeit im Vergleich zu Fall 1 lassen sich hierbei vor allem durch den niedrigeren elektrischen Wirkungsgrad erklären.

In den früheren Stützjahren erzielt die Anlage eine höhere Anzahl an Produktions- und Volllaststunden als in späteren Jahren. Die Differenz zwischen beiden Kennzahlen sinkt im Zeitverlauf ab. Dies weist wieder auf eine sinkende Anzahl von Produktionsstunden in Teillast hin. In den Szenarien A1, A2 und N steigen sowohl die Erlöse als auch die Kosten der Anlage langfristig, in den Szenarien B und C fallen beide Werte hingegen ab, wie Tabelle 39 entnommen werden kann. Durch eine erhöhte Anzahl an Startvorgängen in den späteren Stützjahren steigen auch die kumulierten Startkosten der Anlage im Zeitverlauf an. Die Auswirkungen der unterschiedlichen Preisverläufe auf die Fahrweisen der Anlage können beispielhaft auch anhand von Abbildung 41 nachvollzogen werden. Während im Jahr 2025 die Anlage häufig auch bei kurzen Zeitperioden mit Preisen unterhalb ihrer variablen Kosten in Teillast fährt, was durch die hohen Startkosten und relativ langen Mindeststillstandszeit der Anlage von einer Stunde bedingt wird, wird sie im Jahr 2050 aufgrund längerer Niedrigpreisperioden häufig ganz ausgeschaltet und fährt nur selten in Teillast.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Tabelle 39: Betriebskennzahlen GuD 250 MW

Szenario		A1			A2			В			С			N	
Stützjahr	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050
Volllaststunden [h]	6240	4989	1716	7053	4516	1948	5959	5596	2866	7596	6154	2427	6331	5040	1573
Produktionsstu nden [h]	6582	5064	1729	7492	4594	1962	6342	5702	2910	7870	6272	2473	6671	5113	1584
Erlöse ¹ [Mio €]	101	120	129	109	94	110	100	133	76	143	143	63	103	121	116
Brennstoffkost en¹ [Mio €]	79	93	104	85	72	86	80	105	60	112	113	50	80	94	92
Davon CO₂- Kosten ¹ [Mio €]	20	42	84	18	26	64	16	36	18	31	38	15	20	42	0
Startkosten¹ [Mio €]	1	1	1	0,3	1	1	1	1	2	0,3	1	1	1	1	1

¹: gerundet auf eine Nachkommastelle für Werte <0,5, ansonsten gerundet auf ganze Stelle

Abbildung 41: Elektrischer Fahrplan der GuD der 250 MW-Klasse für eine Beispielwoche im Szenario A1 im Jahr 2025 und 2050

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT ROF. DR. CHRISTOPH WEBER

6. GuD 250 MW im KWK-Fall

Die GuD-Anlage der 250 MW-Klasse erzielt im KWK-Fall in drei Szenarien einen positiven Kapitalwert, wenn die Investitionskosten der Vergleichsanlage mitberücksichtigt werden. Hierbei wird der höchste Kapitalwert in Szenario C ("Market-Oriented Energy Transformation") erzielt, jedoch führen auch die Szenarien A1 und N zu positiven Kapitalwerten. Die langfristig höchsten Deckungsbeiträge werden in Szenario A1 ("Energy Transformation at its best" bei gleichzeitiger Laststeigerung) erzielt. Eine Übersicht der Deckungsbeiträge und Kapitalwerte inkl. Berücksichtigung der Kosten der Vergleichsinvestition findet sich in Abbildung 42. Ohne Berücksichtigung dieser Vergleichskosten würde die Anlage in keinem Szenario ausreichende Deckungsbeiträge erzielen und müsste die Wärmeerlöse entstehende Lücke durch zusätzliche schließen. Der Barwert (ohne Investitionsausgaben) bezogen auf die installierte elektrische Leistung beträgt zwischen 261 €/kW (Szenario A2) und 354 €/kW (Szenario C).

Abbildung 42: Deckungsbeiträge und Kapitalwerte für GuD-Anlage der 250 MW-Klasse im KWK-Fall

In den früheren Stützjahren erzielt die Anlage eine höhere Anzahl an Produktionsstunden, elektrischen Volllaststunden sowie Wärmevolllaststunden als in späteren Jahren. Die Differenz zwischen Produktionsstunden und Volllaststunden sinkt im Zeitverlauf stark ab. Dies weist auf eine sinkende Anzahl von Produktionsstunden in Teillast hin. Dieser Effekt ist insbesondere für die Wärmevolllaststunden 2050 in den Szenarien A1, A2 und N stärker ausgeprägt, was in diesen Fällen auf eine Ablösung der GuD-Technologie als günstigste Wärmegestehungsalternative zwischen 2035 und 2050 hinweist. Daher findet in diesen Szenarien 2050 ein verstärkt stromgeführter Betrieb der Anlage statt. In diesen Szenarien steigen sowohl die Erlöse des Gesamtportfolios, als auch die Kosten der Anlage langfristig, wie Tabelle 40 entnommen werden kann. In den Szenarien B und C sinken Erlöse und Kosten der Anlage hingegen ab 2035 wieder ab.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Tabelle 40: Betriebskennzahlen GuD 250 MW im KWK-Fall

Szenario		A1			A2			В			С			Ν	
Stützjahr	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050
Volllaststunden elektrisch ¹ [h]	6708	5290	2319	7219	5000	2372	6750	5926	4003	7442	6326	4042	6726	5265	2175
Wärmevolllaststunden ¹ [h]	4093	3310	1662	4452	3087	1529	4156	3572	2745	4464	3664	2865	4107	3289	1554
Produktionsstunden ¹ [h]	8050	6048	2604	8580	5828	2652	8169	6808	4677	8553	7255	4800	8067	6038	2447
Erlöse Portfolio gesamt ^{1,2} [Mio €]	138	162	217	145	128	169	140	179	128	185	189	123	138	160	198
Brennstoffkosten¹ [Mio €]	93	109	156	96	88	116	100	122	93	120	128	94	94	108	142
Davon CO₂-Kosten¹ [Mio €]	23	49	127	21	32	86	20	42	29	34	43	29	23	49	0
Startkosten¹ [Mio €]	1	1	1	0,1	1	2	0,4	1	2	0,2	1	2	1	1	1
Brennstoffkosten Portfolio gesamt¹ [Mio €]	124	149	250	127	120	187	130	165	129	161	173	129	124	148	232
Davon CO₂-Kosten¹ [Mio €]	31	67	203	27	43	139	26	57	40	45	58	40	31	67	0
Startkosten Portfolio gesamt¹ [Mio €]	1	2	2	0,3	2	2	1	1	2	0,3	1	2	1	2	2

¹: gerundet auf eine Nachkommastelle für Werte <0,5, ansonsten gerundet auf ganze Stelle, ²: ohne Wärmeerlöse

Die Auswirkungen der unterschiedlichen Preisverläufe auf die Fahrweisen der Anlage ähneln denen aus Fall 2.

7. Motorenverbundkraftwerk (29 Gasmotoren)

Das Gasmotorenkraftwerk, welches aus 29 modularen Einzelmotoren besteht, erzielt in keinem Szenario einen positiven Kapitalwert. Die langfristig höchsten Deckungsbeiträge werden in den Szenarien A1 ("Energy Transformation at its best", mit gleichzeitiger Laststeigerung) und A2 ("Energy Transformation at its best", ohne gleichzeitiger Laststeigerung) erzielt. Eine Übersicht der Deckungsbeiträge und Kapitalwerte findet sich in Abbildung 43. Der Barwert (ohne Investitionsausgaben) pro installierte elektrische Leistung beträgt zwischen 294 €/kW (Szenario B) und 354 €/kW (Szenario A1).

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

Abbildung 43: Deckungsbeiträge und Kapitalwerte für das Gasmotorenkraftwerk mit 29 Gasmotoren

In den früheren Stützjahren erzielt die Anlage zumeist eine höhere Anzahl an Produktions- und Volllaststunden als in späteren Jahren. Eine Ausnahme stellt Szenario B dar, in dem 2025 eine geringere Volllaststundenzahl erreicht wird als 2035. In den Szenarien A1 und A2 steigen sowohl die Erlöse als auch die Kosten der Anlage langfristig, in den Szenarien B und C fallen beide Werte hingegen ab. In Szenario N sinken die Erlöse 2050 leicht im Vergleich zu 2035, wie Tabelle 41 entnommen werden kann. Durch eine sinkende Anzahl an Startvorgängen in den späteren Stützjahren sinken auch die kumulierten Startkosten der Anlage im Zeitverlauf. Die Auswirkungen der unterschiedlichen Preisverläufe auf die Fahrweisen der Anlage können beispielhaft auch anhand von Abbildung 40 und Abbildung 44 nachvollzogen werden. Aufgrund der hohen Flexibilität der Anlage kommt es nur selten zum Teillastbetrieb des Anlagenverbunds – Grund ist hier meistens ein sich im Zeitverlauf änderndes Preissignal im kurzfristigen Stromhandel, das zu einer Über oder Unterschreitung der marginalen Kosten der Gasmotoren führt. Aufgrund der begrenzten Liquidität im kontinuierlichen Intradayhandel wird die Fahrweise dabei jedoch nur teilweise angepasst. Im Jahr 2050 ist das Kraftwerk während längerer Niedrigpreisperioden häufig ganz ausgeschaltet und fährt nur selten in Teillast.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Tabelle 41: Betriebskennzahlen Gasmotoren

Szenario		A1			A2			В			С			N	
Stützjahr	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050
Volllaststunden [h]	3868	3440	1132	4024	3275	1385	2851	3505	1914	4724	3790	1677	3854	3395	1061
Produktions- stunden [h]	4327	3754	1140	4539	3578	1409	3198	3852	2061	5315	4160	1818	4316	3711	1066
Erlöse ¹ [Mio €]	83	107	110	82	88	100	66	108	69	114	113	59	83	106	100
Brennstoffkosten ¹ [Mio €]	66	87	93	66	71	84	51	89	54	95	95	47	66	86	85
Davon CO₂- Kosten¹ [Mio €]	17	39	76	14	26	62	10	31	17	26	32	15	16	39	0
Startkosten¹ [Mio €]	1	1	0,2	1	1	0,3	1	1	0,4	1	1	0,4	1	0,5	0,2

¹: gerundet auf eine Nachkommastelle für Werte <0,5, ansonsten gerundet auf ganze Stelle

Abbildung 44: Elektrischer Fahrplan des Gasmotorenkraftwerks für eine Beispielwoche im Szenario A1 im Jahr 2025 und 2050

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT ROF. DR. CHRISTOPH WEBER

8. Motorenverbundkraftwerk im KWK-Fall (29 Gasmotoren)

Das Gasmotorenkraftwerk, welches aus 29 modularen Einzelmotoren besteht, erzielt im KWK-Fall in allen Szenarien einen positiven Kapitalwert, wenn die Investitionskosten der Vergleichsanlage mitberücksichtigt werden. Hierbei wird der höchste Kapitalwert in Szenario A1 ("Energy Transformation at its best" bei gleichzeitiger Laststeigerung) erzielt, auch Szenario N ("Energy Transformation at its best – zero emissions") führt zu einem ähnlich hohen Kapitalwert. Die langfristig höchsten Deckungsbeiträge werden ebenfalls in Szenario A1 erzielt. Eine Übersicht der Deckungsbeiträge und Kapitalwerte bei Berücksichtigung der Kosten der Vergleichsinvestition findet sich in Abbildung 45. Ohne Berücksichtigung dieser Vergleichskosten würde die Anlage in keinem Szenario ausreichende Deckungsbeiträge erzielen und müsste die entstehende Lücke durch zusätzliche Wärmeerlöse schließen. Der Barwert (ohne Investitionsausgaben) pro installierte elektrische Leistung beträgt zwischen 50 €/kW (Szenario C) und 185 €/kW (Szenario A1).

Abbildung 45: Deckungsbeiträge und Kapitalwerte für das Gasmotorenkraftwerk mit 29 Gasmotoren im KWK-Fall

In den früheren Stützjahren erzielt die Anlage eine höhere Anzahl an Produktions- und Volllaststunden als in späteren Jahren. Die Differenz zwischen Produktionsstunden und Volllaststunden sinkt im Zeitverlauf ab. Dies weist auf eine sinkende Anzahl von Produktionsstunden in Teillast hin. In den Szenarien A1, A2 und N steigen sowohl die Erlöse des Gesamtportfolios als auch die Kosten der Anlage langfristig, wie Tabelle 42 entnommen werden kann. In den Szenarien B und C sinken Erlöse und Kosten der Anlage hingegen ab 2035 wieder ab. Startkosten spielen für diese flexible Technologie eine eher untergeordnete Rolle.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Tabelle 42: Betriebskennzahlen Gasmotoren im KWK-Fall

Szenario		A1			A2			В			С			N	
Stützjahr	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050
Volllaststunden ³ [h]	3893	3408	2083	4223	3142	2145	3926	3548	3086	4292	3577	3101	3913	3426	1986
Produktions- stunden ¹ [h]	5755	4435	2606	6448	4120	2632	5916	4732	3801	6492	5035	3880	5759	4469	2515
Erlöse Portfolio gesamt ^{1,2} [Mio €]	112	140	226	114	111	174	113	146	128	144	149	124	113	141	209
Brennstoffkosten¹ [Mio €]	66	86	172	69	68	125	71	90	88	86	90	88	67	87	159
Davon CO₂- Kosten¹ [Mio €]	17	39	140	15	25	93	14	31	27	24	30	27	17	39	0
Startkosten¹ [Mio €]	0,4	0,4	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,3
Brennstoffkosten Portfolio gesamt¹ [Mio €]	105	137	321	106	112	238	111	144	138	132	146	137	105	138	305
Davon CO₂- Kosten¹ [Mio €]	26	62	261	23	41	177	22	50	42	37	49	42	26	62	0
Startkosten Portfolio gesamt¹ [Mio €]	1	1	1	0,5	1	1	1	1	1	0,5	1	1	1	1	1

¹: gerundet auf eine Nachkommastelle für Werte <0,5, ansonsten gerundet auf ganze Stelle, ²: ohne Wärmeerlöse,

³: aufgrund der fixen Kopplung von elektrischer Leistung und Wärmeleistung ist keine Unterscheidung zwischen elektrischen

Volllaststunden und Wärmevolllaststunden notwendig

Die Auswirkungen der unterschiedlichen Preisverläufe auf die Fahrweisen der Anlage können beispielhaft anhand von Abbildung 46 und Abbildung 47 nachvollzogen werden. Während im Jahr 2025 das Gasmotorenkraftwerk bei Preisen unterhalb seiner variablen Kosten häufiger nur einen Teil der Gasmotoren betreibt und so insgesamt betrachtet in Teillast fährt, da es die günstigste oder zweitgünstigste Wärmebereitstellungsalternative im Netz darstellt, wird es im Jahr 2050 häufig aufgrund längerer Niedrigpreisperioden ganz ausgeschaltet und fährt seltener in Teillast. Der Heizkessel oder die kleine GuD-KWK (KWK2) stellen in diesen Momenten eine zusätzliche, günstigere Wärmebereitstellungsalternative dar und übernehmen die Wärmeversorgung, sobald der Wärmespeicher seinen Energieinhalt entladen hat.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Abbildung 46: Elektrischer Fahrplan und Wärmefahrplan des Gasmotorenkraftwerks im KWK-Fall für eine Beispielwoche im Jahr 2025, Szenario A1

Abbildung 47: Elektrischer Fahrplan und Wärmefahrplan des Gasmotorenkraftwerks im KWK-Fall für eine Beispielwoche im Jahr 2050, Szenario A1

9. Gasturbine

Die Gasturbine erzielt in jedem Szenario einen positiven Kapitalwert. Hierbei wird der höchste Kapitalwert in Szenario A1 ("Energy Transformation at its best", mit gleichzeitiger Laststeigerung) erzielt. Die Deckungsbeiträge unterscheiden sich jedoch zwischen den Szenarien insgesamt in allen Stützjahren nur geringfügig. Eine Übersicht der Deckungsbeiträge und Kapitalwerte findet sich in Abbildung 48. Der Barwert (ohne Investitionsausgaben) bezogen auf die installierte elektrische Leistung beträgt zwischen 380 €/kW (Szenario B) und 404 €/kW (Szenario A1).

Abbildung 48: Deckungsbeiträge und Kapitalwerte für die Gasturbine

In den früheren Stützjahren erzielt die Gasturbine eine höhere Anzahl an Produktions- und Volllaststunden als in späteren Jahren, was Tabelle 43 entnommen werden kann. Ein Teillastbetrieb, obwohl technisch möglich, findet nicht statt, daher stimmen die Produktions- und Vollaststundenzahl überein. In den Szenarien A1 und A2 und N steigen sowohl die Erlöse als auch die Kosten der Anlage langfristig, in den Szenarien B und C fallen beide Werte hingegen im Jahr 2050 ab. Durch eine sinkende Anzahl an Startvorgängen in den späteren Stützjahren sinken auch die kumulierten Startkosten der Anlage im Zeitverlauf. Diese können bei der Bewertung der Wirtschaftlichkeit aufgrund ihrer geringen Höhe insgesamt jedoch vernachlässigt werden. Die Auswirkungen der unterschiedlichen Preisverläufe auf die Fahrweisen der Anlage können beispielhaft auch anhand von Abbildung 49 nachvollzogen werden. Aufgrund der hohen Flexibilität der Anlage kommt es im Jahr 2025 zu sehr häufigen Starts. Im Jahr 2050 ist die Turbine während längerer Niedrigpreisperioden ausgeschaltet und fährt nur noch selten an.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Tabelle 43: Betriebskennzahlen Gasturbine

Szenario		A1			A2			В			С			Ν	
Stützjahr	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050
Volllaststunden [h]	3434	2890	1062	3529	2745	1263	3050	2885	1713	3749	3067	1526	3424	2900	982
Produktionsstunden [h]	3434	2890	1062	3529	2745	1263	3050	2885	1713	3749	3067	1526	3424	2900	982
Erlöse¹ [Mio €]	18	21	24	18	18	21	17	21	15	22	22	13	18	21	21
Brennstoffkosten¹ [Mio €]	14	17	21	14	14	18	13	17	12	18	18	10	14	18	19
Davon CO₂-Kosten¹ [Mio €]	3	8	17	3	5	14	3	6	4	5	6	3	3	8	0
Startkosten ¹ [Mio €]	0,06	0,04	0,01	0,07	0,05	0,02	0,06	0,05	0,03	0,07	0,06	0,03	0,06	0,05	0,01

¹: gerundet auf zwei Nachkommastellen für Werte <0,5, ansonsten gerundet auf ganze Stelle

Abbildung 49: Elektrischer Fahrplan der Gasturbine für eine Beispielwoche im Szenario A1 im Jahr 2025 und 2050

10. Gasturbine RK im KWK-Fall

Die Gasturbine erzielt im KWK-Fall in allen Szenarien einen negativen Kapitalwert, auch wenn die Investitionskosten der Vergleichsanlage mitberücksichtigt werden. Einem positiven Kapitalwert am nächsten kommt Szenario B ("Struggling with Energy Transformation"). Dabei werden im gewählten Ansatz sogar in einigen Fällen negative Deckungsbeiträge realisiert, d.h. das genutzte Vergleichsportfolio kann in diesen Szenarien und Stützjahren eine günstigere Wärmebereitstellung gewährleisten. Dies liegt im relativ niedrigen Wirkungsgrad der Gasturbine begründet, insbesondere im Vergleich zu einer GuD-Anlage. Eine Übersicht der Deckungsbeiträge und Kapitalwerte bei Berücksichtigung der Kosten der Vergleichsinvestition findet sich in Abbildung 50. Der Barwert (ohne Investitionsausgaben) bezogen auf die installierte elektrische Leistung beträgt zwischen -153 €/kW (Szenario C) und -68 €/kW (Szenario B). Dies zeigt auf, dass diese Technologie für die Wärmebereitstellung langfristig nicht wirtschaftlich genutzt werden kann.

Abbildung 50: Deckungsbeiträge und Kapitalwerte für die Gasturbine

In den früheren Stützjahren erzielt die Anlage eine höhere Anzahl an Produktionsstunden, elektrische Volllaststunden sowie Wärmevolllaststunden als in späteren Jahren. Die Differenz zwischen Produktionsstunden und elektrischen Volllaststunden ist über alle Stützjahre und Szenarien gering. Dies weist auf eine gleichbleibend niedrige Anzahl von Produktionsstunden in Teillast hin, was durch die niedrigen Startkosten der Anlage und die modellierte Mindeststillstandszeit von nur einer Viertelstunde begründet ist. In den Szenarien A1, A2 und N steigen sowohl die Erlöse des Gesamtportfolios als auch die Kosten der Anlage langfristig, wie Tabelle 44 entnommen werden kann. In den Szenarien B und C sinken Erlöse und Kosten der Anlage hingegen ab 2035 wieder ab. Der Anteil der Turbine an den Gesamtkosten des Portfolios ist gering, was auf eine häufige Nutzung der kleinen GuD-Anlage des Referenzportfolios (KWK2), sowie des Heizkessels als Wärmegestehungsalternativen hinweist.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Tabelle 44: Betriebskennzahlen Gasturbine im KWK-Fall

Szenario		A1			A2			В			с			N	
Stützjahr	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050
Volllaststunden elektrisch ¹ [h]	4738	3936	2060	5188	3831	2144	4678	4247	3069	5382	4378	3013	4727	3915	1959
Wärmevolllaststunden ¹ [h]	3328	2821	1614	3635	2577	1510	3349	2995	2289	3747	2999	2323	3328	2820	1544
Produktionsstunden ¹ [h]	4844	4004	2160	5329	3900	2222	4826	4325	3184	5503	4466	3136	4830	3979	2052
Erlöse Portfolio gesamt ^{1,2} [Mio €]	58	69	94	61	57	75	58	75	56	77	79	54	59	70	85
Brennstoffkosten¹ [Mio €]	19	24	41	20	20	31	20	26	21	26	26	20	19	24	38
Davon CO₂-Kosten¹ [Mio €]	5	11	33	4	7	23	4	9	6	7	9	6	5	11	0
Startkosten ¹ [Mio €]	0,06	0,04	0,03	0,07	0,04	0,03	0,06	0,05	0,04	0,06	0,06	0,04	0,06	0,04	0,02
Brennstoffkosten Portfolio gesamt¹ [Mio €]	50	59	97	52	49	74	51	65	50	67	69	50	50	60	89
Davon CO₂-Kosten ¹ [Mio €]	12	27	79	11	18	55	10	23	16	19	23	15	13	27	0
Startkosten Portfolio gesamt¹ [Mio €]	0,28	1	0,45	0,17	1	1	0,26	0,43	1	0,18	0,31	1	0,28	1	0,43

¹: gerundet auf zwei Nachkommastellen für Werte <0,5, ansonsten gerundet auf ganze Stelle, ²: ohne Wärmeerlöse

Der häufige Einsatz von anderen Wärmeanlagen des Portfolios und der häufige Betrieb in elektrischer Volllast können auch **Abbildung 51** und **Abbildung 52** entnommen werden. Es fällt auf, dass sich die Anzahl der Produktionsstunden im KWK-Fall im Vergleich zum rein elektrischen Fall in beiden Stützjahren erhöht, da zusätzlich auch in Stunden produziert wird, in denen die Turbine im Strommarkt nur einen geringen Verlust einfährt.

Abbildung 51: Elektrischer Fahrplan und Wärmefahrplan der Gasturbine im KWK-Fall für eine Beispielwoche im Jahr 2025, Szenario A1

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Abbildung 52: Elektrischer Fahrplan und Wärmefahrplan der Gasturbine im KWK-Fall für eine Beispielwoche im Jahr 2050, Szenario A1

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

5.3 Ökologische Ergebnisse und Gesamtbewertung ausgewählter Kraftwerkskonzepte

Die in den ökonomischen Simulationen generierten Fahrpläne der modellierten flexiblen Kraftwerkssysteme können auch bezüglich ihres CO₂-Ausstoßes bewertet werden. Da in allen Szenarien und Stützjahren, abgesehen vom Stützjahr 2050 in Szenario N, mit Erdgas ein fossiler Brennstoff genutzt wird, fallen in den übrigen Stützjahren und Szenarien CO₂-Emissionen proportional zum Brennstoffeinsatz an. Hier wird über alle Szenarien und Stützjahre die Annahme einer Emissionsintensität von 0,2 t CO₂ pro MWh_{th} eingesetzten Brennstoffes getroffen. Für die jeweiligen Szenarien und Stützjahre kann auf Basis der Ergebnisse des Modells HYBRIDSPOT eine jeweilige durchschnittliche Emissionsintensität des deutschen Stromsystems bestimmt werden. Diese ist in Tabelle 45 abgebildet⁴⁰. Aufgrund der modellierten, im Zeitverlauf steigenden Reduktion von Treibhausgasen im europäischen Gesamtsystem sinkt die Emissionsintensität entsprechend in allen Szenarien bis 2050 deutlich ab.

Tabelle 45: Emissionsintensität der deutschen Stromerzeugung (ohne Berücksichtigung von Im- und Export) in t CO_2/MWh_{el} pro Szenario und Stützjahr

Stützjahr\Szenario	A1	A2	В	С	Ν
2025	0,24	0,32	0,28	0,30	0,24
2035	0,12	0,11	0,15	0,16	0,12
2050	0,04	0,04	0,12	0,12	0

Alle in diesem Projekt modellierten, konventionell befeuerten Anlagen tragen überdurchschnittlich zu den Emissionen des elektrischen Gesamtsystems des jeweiligen Stützjahres und Szenarios bei. Die relative Emissionsintensität jedes Anlagentyps bei Volllast und Teillast ist in Tabelle 46 abgebildet. Allgemein gilt, dass ein höherer Wirkungsgrad auch mit einer niedrigeren Emissionsintensität pro erzeugter MWh Strom einhergeht. Allerdings sind im Gegenzug Kraftwerkstechnologien mit niedriger Emissionsintensität und hohem Wirkungsgrad auch wirtschaftlicher und erreichen in einem Strommarkt über ein Stützjahr auch höhere Volllaststunden, wodurch im Zeitverlauf höhere absolute Emissionen für diese Technologien entstehen. Dieser Effekt ist beispielhaft für Szenario A1 in den Stützjahren 2025 (höhere Volllaststundenzahl) und 2050 (niedrigere Volllaststundenzahl) ebenfalls in Tabelle 46 abgebildet.

⁴⁰ Da HYBRIDSPOT die Technologiezusammensetzung des importierten, ausländischen Stroms nicht modelliert, wird importierter Strom hier weder auf Seiten der Stromerzeugung, noch auf Seiten des Brennstoffverbrauchs berücksichtigt.

Tabelle 46: Emissionsintensität (stromseitig) je betrachteter Technologie in t CO₂/MWh_{el}

Technologie	in Volllast	in Teillast
RK GuD	0,33	0,36
GuD 250 MW	0,38	0,43
RK Gasmotoren ⁴¹	0,4	45
RK Gasturbinen	0,47	0,57

Neben den Emissionsintensitäten des erzeugten Stroms können auch die absoluten Emissionen der KWK-Fälle mit den Emissionen des Vergleichsportfolios verglichen werden, was in Tabelle 47 dargestellt wird. Hier zeigt sich erneut der o.g. Effekt – eine höhere elektrische Leistung, kombiniert mit einer hohen Volllaststundenzahl, wirkt sich positiv auf das wirtschaftliche Ergebnis, jedoch ebenso erhöhend auf die benötigte Brennstoffmenge und daher auch auf die entstehenden Emissionen aus. Die GuD-Technologien (RK GuD, GuD mit LuVo, GuD 250 MW) weisen daher deutlich höhere direkte Emissionen als ihre jeweiligen Vergleichsfälle auf; sowohl aus Anlagensicht als auch aus Sicht des Gesamtportfolios⁴². Gasmotoren und Gasturbinen weisen niedrigere Emissionen auf als ihre jeweiligen Vergleichsportfolios, was unterschiedliche Gründe hat. Während die Gasturbine allgemein seltener eingesetzt und häufig durch den effizienten Heizkessel ersetzt wird, werden die Gasmotoren aufgrund ihrer fixen Kopplung von elektrischem Strom- und Wärmeoutput im betrachteten Anwendungsfall wärmegetrieben und daher besonders effizient eingesetzt.

⁴¹ Keine Teillast der Einzelmotoren betrachtet, Teillast des Gasmotorenkraftwerks bedeutet Zuschaltung nur einer Teilmenge von Gasmotoren.

⁴² Der Salzspeichereinsatz hat nur geringe Auswirkungen auf die Emissionen des Gesamtsystems und trägt in den meisten Fällen zu einer leichten Senkung der Emissionen (<0,6% der Emissionen Gesamtportfolios) im Vergleich zum Fall ohne Salzspeicher (Fall 2) bei.

Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik Univ.-Prof. Dr.-Ing. habil. K. Görner

Tabelle 47 Prozentuale Emissionserhöhung durch die betrachteten KWK-Technologien zum jeweiligen Vergleichsportfolio

	Szenario		A1			A2			В			С		ſ	N
Technolo gie (Fall)	Stützjahr	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035	2050	2025	2035
RK GuD (2)	Emissionen Anlage	+49%	+43%	+47%	+49%	+42%	+44%	+50%	+45%	+40%	+48%	+46%	+42%	+49%	+43%
	Emissionen Portfolio	+43%	+39%	+35%	+42%	+38%	+33%	+44%	+40%	+38%	+41%	+40%	+39%	+42%	+38%
GuD mit LuVo (4)	Emissionen Anlage	+47%	+42%	+41%	+48%	+41%	+40%	+49%	+44%	+39%	+47%	+44%	+39%	+47%	+42%
	Emissionen Portfolio	+32%	+30%	+23%	+33%	+29%	+23%	+34%	+31%	+27%	+32%	+31%	+27%	+33%	+29%
GuD 250 MW (6)	Emissionen Anlage	+47%	+42%	+41%	+48%	+41%	+40%	+49%	+44%	+39%	+47%	+44%	+39%	+47%	+42%
	Emissionen Portfolio	+32%	+30%	+23%	+33%	+29%	+23%	+34%	+31%	+27%	+32%	+31%	+27%	+33%	+29%
Gasmoto ren (8)	Emissionen Anlage	-33%	-33%	-16%	-31%	-36%	-19%	-32%	-35%	-30%	-33%	-38%	-32%	-33%	-33%
	Emissionen Portfolio	-20%	-19%	-9%	-20%	-19%	-9%	-18%	-22%	-16%	-22%	-24%	-17%	-19%	-19%
Gasturbi ne (10)	Emissionen Anlage	-14%	-12%	-15%	-15%	-8%	-10%	-14%	-15%	-16%	-17%	-18%	-18%	-15%	-13%
	Emissionen Portfolio	-7%	-6%	-7%	-6%	-3%	-6%	-7%	-8%	-9%	-7%	-8%	-9%	-7%	-6%

LEHRSTUHL FÜR ENERGIEWIRTSCHAFT PROF. DR. CHRISTOPH WEBER

Gesamtbewertung

Die in diesem Projekt betrachteten, gasbefeuerten Kraftwerkskonfigurationen haben in den in diesem Projekt modellierten Szenarien sehr unterschiedliche wirtschaftliche Erfolgsaussichten, wobei jedoch einige gemeinsame Trends zu beobachten sind. Es fällt vor allem auf, dass aufgrund steigender Preisvolatilitäten und einem ansteigenden Grad an Emissionsvermeidung die Anzahl der Nutzungsund Volllaststunden jeder Verbrennungstechnologie bis 2050 sinken wird. Die Wichtigkeit des Teillastbetriebes, welcher in den modellierten Stützjahren 2025 und 2035 häufig auftritt, wird im Zeitverlauf bis 2050 stark abnehmen. Daher erzielen große GuD-Kraftwerke mit hohen Volllastwirkungsgraden in dieser Studie langfristig einen positiven Kapitalwert, da sie in den wenigen verbleibenden Produktionsstunden den höchsten Deckungsbeitrag erzielen können. Interessanterweise tritt dieser Effekt besonders in preisvolatilen Szenarien, d.h. vor allem den Szenarien mit der höchsten Emissionsvermeidung (insbesondere A1) auf, da hier aufgrund der hohen herrschenden CO2-Preise die größten Margen in Hochpreisphasen auftreten. Kleinere, weniger effiziente GuD-Anlagen, wie die der 250 MW-Klasse haben derweil Probleme, ihre Investitionskosten in diesen Preisphasen zu amortisieren.

Diese Effekte sind ebenfalls Treiber der Wirtschaftlichkeit der betrachteten GuD-Technologien in den KWK-Fällen. Zwar kann durch die Befriedigung der Wärmenachfrage nicht rein strompreisgesteuert gefahren werden und es werden in absoluten Zahlen niedrigere Deckungsbeiträge im Stromhandel erzielt, jedoch wiegen die relativen Vorteile gegenüber der betrachteten alternativen KWK-Technologie des Vergleichsportfolios diese Nachteile in allen Fällen wieder auf.

Die oben beschriebene Tendenz zu einem langfristig höheren Anteil des Vollastbetriebes an den Produktionsstunden führt dazu, dass die betrachtete Variation der Kraftwerkskonfiguration mit Luftvorwärmung, welche einen niedrigeren Volllastwirkungsgrad, jedoch einen besseren Teillastwirkungsgrad aufweist, kurzfristig bessere, jedoch langfristig niedrigere Deckungsbeiträge erzielt als die Konfiguration ohne diese Technologie. Daher stellt dies vor allem für die nahe, weniger für die fernere Zukunft eine interessante Konfigurationsalternative dar.

Der Salzspeicher rechnet sich in der betrachten Portfoliokonfiguration in allen betrachteten Szenarien und kann einen wertvollen Beitrag zur Verlagerung der Stromproduktion in Stromhochpreisphasen leisten. Insgesamt ist seine Wirtschaftlichkeit jedoch stark von der Wirtschaftlichkeit der Gesamtanlage abhängig – in einer Anlage mit niedriger Betriebsstundenzahl könnte er seine in diesem Projekt angesetzten Investitionskosten von ca. einer Million Euro mutmaßlich schwerer erwirtschaften.

Die Gasmotorenkraftwerke weisen eine vergleichsweise hohe Investitionssumme im Verhältnis zu ihren erzielten Erlösen auf und rechnen sich daher im elektrischen Betrieb im Gegensatz zu den modellierten Gasturbinen nicht, obwohl diese einen niedrigeren Wirkungsgrad und ähnliche Flexibilitätseigenschaften aufweisen. Die Gasturbinen profitieren dabei unabhängig von Szenario und Stützjahr von wenigen Hochpreisphasen des Jahres, die ausreichende Deckungsbeiträge liefern, um die niedrigen Investitions- und Betriebskosten zu decken.

Im KWK-Fall dreht sich dieses Bild jedoch um – wenn die Anlagen mit Wärmegestehungsalternativen in einem Wärmenetz konkurrieren, ist der bessere Wirkungsgrad der Gasmotoren der entscheidende Parameter, um hohe Volllaststunden und somit ein positives wirtschaftliches Ergebnis zu erzielen. Für die Gasmotoren ergibt sich sogar ein relativer ökologischer Vorteil gegenüber der GuD-Vergleichstechnologie, die CO₂-Emissionen können durch ihren Einsatz etwas gesenkt werden.

Aus ökologischer Sicht sind jedoch alle in diesem Projekt betrachteten, mit konventionellem Erdgas betriebenen Technologien langfristig zu emissionsintensiv, um die angestrebten Klimaziele von 80%-100% Reduktion der Treibhausgase (ggü. dem Wert von 1990) bis 2050 zu erreichen. Daher sollte künftige Forschung die Untersuchung von emissionsneutralen Verbrennungstechnologien (wie in Szenario N 2050 angenommen) stärker in den Fokus nehmen.