Wissenschaftliche Mitarbeiter:innen

M.Sc. Abuzar Khalid

Wissenschaftlicher Mitarbeiter

M.Sc. Abuzar Khalid

R11 T07 C07
+49 201 18-33389
+49 201 18-32703
nach Vereinbarung
Lehrstuhl für Energiewirtschaft
Universität Duisburg-Essen, Campus Essen
Fakultät für Wirtschaftswissenschaften
Universitätsstraße 12
45141 Essen


02/2020 Universität Duisburg Essen

Wissenschaftlicher Mitarbeiter am Lehrstuhl für Energiewirtschaft (EWL)

10/2015 - 09/2018 Technische Universität München
Masterstudium (M.Sc.) Energietechnik
Schwerpunkt: Erneuerbare Energien, Energiewirtschaft, Energiemärkte

09/2014 - 09/2015 Nationale Universität für Wissenschaft und Technologie
Masterstudium (M. Eng) Maschinenbau

09/2010 - 08/2014 HITEC Universität
Bachelorstudium (B.Sc.) Maschinenbau
Schwerpunkt: Erneuerbare Energien


ZellNetz2050 – Simulation des Aufbaus zellularer Energienetzstrukturen zum sektorübergreifenden Energieausgleich (Elektrizität, Wärme, Gas und Mobilität)  Link

DiAnEE – Digitaler Analyst für die nachhaltige Energienutzung und Energiekostensenkung bei Industrie- und Gewerbekunden Link

SysZell - Integrative Ansätze für die Bereitstellung von SDL in zellularen Systemen Link


  • Voswinkel, Simon; Höckner, Jonas; Khalid, Abuzar; Weber, Christoph: Sharing congestion management costs among system operators using the Shapley value. In: Applied Energy, Jg. 2021 (2022). doi:10.1016/j.apenergy.2022.119039VolltextBIB DownloadDetails

    With energy generation becoming increasingly decentralized, the need for congestion management across grid voltage levels is also increasing. To enable fair sharing of congestion costs among grid operators, these costs must be allocated to congested grid elements. We propose using the Shapley value for this purpose. The Shapley value is a cooperative game theory concept that was developed to share a total surplus generated by a coalition of players between the players based on their marginal contributions to the coalition. We apply this concept to share the costs of congestion management between grid elements based on their contributions to overall congestion management costs. To reduce the computational complexity of the Shapley value, we introduce two novel simplification approaches and compare them to existing methods using a numerical example based on CIGRE benchmark grids. The first method exploits the fact that the characteristic function for the congestion costs is obtained from an optimal power flow computation (i.e., a constrained optimization problem). It utilizes knowledge about which constraints are non-binding in the optimization to derive the values of related coalitions without calculating them. The second method takes advantage of the fact that the congestion management cost-allocation game is monotone and derives the values of coalitions based on this property. Both methods are implemented and compared to sampling. Using the first method, we are able to reduce computational complexity to less than 20% of that of the original problem while maintaining exact results. Our second approach is not dependent on detailed knowledge of the underlying optimization problem and can reduce the computational time by almost half with exact results and much further when compromising precision. While the methods are presented through an application example, they can be applied to other games with similar properties.

    • Schinke-Nendza, Aiko; Flatter, Felix; Kramer, Hendrik; Khalid, Abuzar; Uhlemeyer, Björn; Rasti, Sasan Jacob; Trossen, Christian; Mohammadi, Sara; Mayorga Gonzalez, Daniel; Spanel, Udo; Wellssow, Wolfram; Weber, Christoph; Zdrallek, Markus; Schegner, Peter; Kubis, Andreas: 'ZellNetz2050' - A Concept for the Efficient and Effective Operation of Multi-Sector Web-of-Cells Energy Systems. In: CIGRE Session 2022 (2021). VolltextBIB DownloadDetails
    • Schinke-Nendza, Aiko; Blumberg, Gerald; Khalid, Abuzar; Weber, Christoph: Regulatory and Policy Aspects for a Cellular Design of Electricity Markets. In: Proceedings of the 5th International Hybrid Power Systems Workshop | 18 - 19 May 2021 (2021). PDFVolltextBIB DownloadDetails

    Begleitete Abschlussarbeiten:

    • Assessing the Required Hydrogen Storage Capacity for Germany's Climate-Neutral Energy Transition (Masterarbeit BWL - Energy and Finance, in Bearbeitung)
    • Pathways for natural gas markets and corresponding pricing mechanisms in China (Bachelorarbeit BWL - Energy and Finance, 2023)
    • Hydrogen Infrastructure Development – Modeling Hydrogen Network (Bachelorarbeit BWL - Energy and Finance, 2023)
    • Data Preparation, Analysis and Forecasts based on Historical Weather Years for a Parsimonious Fundamental Model of a Future Energy System (Masterarbeit Volkswirtschaftslehre, 2022)
    • Competitive Analysis of Hydrogen Routes in Selected Industrial Sectors (Masterarbeit BWL - Energy and Finance, 2022)
    • Potentials of blockchain technology for decentralized energy systems: regulations and use cases (Masterarbeit BWL - Energy and Finance, 2022)
    • Potentials of blockchain technology for decentralized energy systems: regulations and use cases (Masterarbeit BWL - Energy and Finance)
    • Einflussfaktoren für die Verbreitung von Elektromobilität – Eine Analyse am Beispiel (Bachelorarbeit Betriebswirtschaftslehre)