Academic Staff

M.Sc. Maike Spilger

Academic Staff

M.Sc. Maike Spilger

Room:
R11 T07 C09
Phone:
+49 201 18-36713
Fax:
+49 201 18-32703
Email:
Consultation Hour:
nach Vereinbarung
Address:
Lehrstuhl für Energiewirtschaft
Universität Duisburg-Essen, Campus Essen
Fakultät für Wirtschaftswissenschaften
Universitätsstraße 12
45141 Essen

Curriculum Vitae:

seit 06/2020
Wissenschaftliche Mitarbeiterin am Lehrstuhl für Energiewirtschaft

10/2017 - 05/2020 Universität Duisburg-Essen
Masterstudium "Betriebswirtschaftslehre - Energy and Finance" Abschluss: Master of Science

01/2019 - 05/2019 Tampere University Finnland
Auslandssemester Schwerpunkt Energiewirtschaft

10/2013 - 02/2017 Fachhochschule Münster
Bachelorstudium "Wirtschaftsingenieurwesen - Energietechnik" Abschluss: Bachelor of Engineering

08/2005 - 07/2013 Albertus-Magnus-Gymnasium Viernheim
Allgemeine Hochschulreife

Publications:

Filter:
  • Spilger, M.; Schneider, D.; Weber, C.: Uncertainty Characterization for Generation Adequacy Assessments – Including an Application to the Recent European Energy Crisis, 2024. Full textCitationDetails

Talks:

Filter:
  • Spilger, Maike; Böcker, Benjamin; Weber, Christoph: Extending Least-Squares Monte Carlo to a System-Oriented Study on Storage Operation, 13th International Ruhr Energy Conference, 28.08.2024, Essen. Details
  • Spilger, M.: Empowering Generation Adequacy: The Impact of Energy Storages Evaluated with a System wide Least Squares Monte Carlo Approach, Project Workshop VeSiMa, 26.10.2023, Essen. PDFDetails
  • Spilger, M.; Schneider, D.; Weber, C.: Assessment of generation adequacy taking into account the dependence of the European power system on natural gas, 13. International Energiewirtschaftstagung an der TU Wien, 15.02.2023, Wien. PDFDetails
  • Spilger, M.; Weber, C.: Using Open Access Power Plant Data for Stochastic Availability Modelling, International Conference on Operations Research (OR 2022), 07.09.2022, Karlsruhe. PDFDetails

Tutored Theses:

Filter:
  • Probabilistische Modellierung von Einspeisung aus Windenergie in Deutschland mit Hilfe eines GAMLSS (Master Thesis Business Administration - Energy and Finance, 2024) Details

    Background and content of the thesis:
    The infeed of intermittent renewable energy sources (RES) increases in the European energy system and subsequently its relevance for several market participants. Predic-tions of RES infeed are used, among others, in energy trading and power plant dis-patch. Particularly rare events of low RES infeed are significant in analyses on security of supply, due to the high share of RES infeed in the total power generation. Security of supply and generation adequacy specifically is assessed in probabilistic approaches with simulation models, that generate many realizations of energy system uncertain-ties such as RES infeed. In a simulation model, distributional models, such as general-ized additive models for location and shape (GAMLSS), are a promising approach to estimate non-parametric distributions of RES-infeed.
    This master thesis aims to develop, implement, and evaluate a distributional model to estimate the distribution of onshore wind infeed in Germany, incorporating relevant exogenous factors. The focus of this work will be on parameterizing the distributional model, involving extensive data preparation and exploration. Subsequently, a case study will be conducted, simulating the onshore wind infeed using a simulation model based on the estimated distribution.
    For more on GAMLSS see: Stasinopoulos, M. D., Rigby, R. A., Heller, G. Z., Vou-douris, V., & De Bastiani, F. (2017). Flexible regression and smoothing: using GAMLSS in R. CRC Press.

    Requirements:
    Interest in econometrics and data science, preferably previous knowledge in program-ming with R


    Contact person:
    Further information are available on request by Maike Spilger. Tel.: +49 201-183-6713, maike.spilger@uni-due.de
    If your interested, please send your application documents (curriculum vitae, tran-script of records, letter of motivation) to the email address mentioned above.


    Bitte klicken Sie auf den nachfolgend Link für weitere Informationen.

  • Extremsituationen im Elektrizitätssystem: Statistische Analyse und Einbettung in Energiesystemmodellen (Master Thesis Business Administration - Energy and Finance, 2023)
  • Entwicklung eines Konzepts zur Priorisierung von Instandhaltungsmaßnahmen im elektrischen Energiesystem (Master Thesis Industrial Engineering, 2023)
  • Analyse des Einflusses der Nachhaltigkeitsberichterstattung deutscher Industrieunternehmen auf Erreichen der Klimaschutzziele (Bachelor Thesis Business Administration, 2023)
  • Nutzung des Value of Lost Load zur ökonomischen Bewertung von Versorgungsunterbrechungen (Bachelor Thesis Business Administration, 2023)
  • Nutzung von Data Science Methodiken zur Vorhersage der Stromlast: Vergleich von Long Short-Term Memory Modellen mit Regressionsmodellen (Master Thesis Business Administration - Energy and Finance, 2023)
  • Potentials of blockchain technology for decentralized energy systems: regulations and use cases (Master Thesis Business Administration - Energy and Finance, 2022)
  • Analyse zur Identifikation von Dunkelflauten und deren Einfluss auf die Versorgungssicherheit (Bachelor Thesis Business Administration, 2022)
  • Klimaneutralität von Universitäten am Beispiel der Universität Duisburg-Essen (Bachelor Thesis Business Administration, 2021)
  • Eine Analyse der Relevanz von energiewirtschaftlichen Themen im bundesdeutschen Wahlkampf 2021 (Bachelor Thesis Business Administration, 2021)
  • Modellgestützte Analyse der Rolle von Wasserstoff im deutschen Stromsystem 2045 (Master Thesis Industrial Engineering)